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The potential benefits of physiology for conservation are well established and include greater specificity of management 
techniques, determination of cause–effect relationships, increased sensitivity of health and disturbance monitoring and 
greater capacity for predicting future change. While descriptions of the specific avenues in which conservation and physiol-
ogy can be integrated are readily available and important to the continuing expansion of the discipline of ‘conservation physi-
ology’, to date there has been no assessment of how the field has specifically contributed to conservation success. However, 
the goal of conservation physiology is to foster conservation solutions and it is therefore important to assess whether physi-
ological approaches contribute to downstream conservation outcomes and management decisions. Here, we present eight 
areas of conservation concern, ranging from chemical contamination to invasive species to ecotourism, where physiological 
approaches have led to beneficial changes in human behaviour, management or policy. We also discuss the shared character-
istics of these successes, identifying emerging themes in the discipline. Specifically, we conclude that conservation physiol-
ogy: (i) goes beyond documenting change to provide solutions; (ii) offers a diversity of physiological metrics beyond 
glucocorticoids (stress hormones); (iii) includes approaches that are transferable among species, locations and times; (iv) 
simultaneously allows for human use and benefits to wildlife; and (v) is characterized by successes that can be difficult to find 
in the primary literature. Overall, we submit that the field of conservation physiology has a strong foundation of achievements 
characterized by a diversity of conservation issues, taxa, physiological traits, ecosystem types and spatial scales. We hope that 
these concrete successes will encourage the continued evolution and use of physiological tools within conservation-based 
research and management plans.
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Introduction
Although the discipline of conservation physiology was for-
mally defined only recently (Wikelski and Cooke, 2006), 
physiology has permeated conservation biology for decades 
(reviewed by Cooke et al., 2013). The mechanistic approach 
espoused by conservation physiologists is considered pow-
erful because it allows for the determination of cause–effect 
relationships (Carey, 2005; Wikelski and Cooke, 2006), 
contributing a valuable, evidence-based approach to conser-
vation (Sutherland et al., 2004). More specifically, the disci-
pline integrates functional and mechanistic responses at all 
scales (Cooke et al., 2013), leveraging diverse techniques 
from genomics and immunology to energetics and sensory 
physiology with the goal of fostering conservation solutions 
(Carey, 2005; Tracy et al., 2006; Wikelski and Cooke, 2006; 
Cooke and O’Connor, 2010; Seebacher and Franklin, 2012; 
Cooke et al., 2013). As a synergistic union of two disci-
plines, conservation physiology has the potential to lead to 
diverse tools and new theoretical paradigms (Coristine 
et al., 2014); however, it must also contend with the differ-
ing perceptions, knowledge bases and logistical constraints 
from each independent discipline (Cooke and O’Connor, 
2010) that may inhibit full integration (Lennox and Cooke, 
2014). Importantly, successful integration of the disciplines 
is a multistep process that links ecological context and vari-
ation in physiology to the fitness parameters that drive pop-
ulation persistence (Coristine et  al., 2014). To have a 
tangible conservation impact, this information must then be 
translated into management recommendations, recovery 
plans or policy initiatives (Cooke and O’Connor, 2010; 
Coristine et al., 2014).

To date, perspectives on the field of conservation physiol-
ogy have focused primarily on the future potential of the dis-
cipline (Carey, 2005; Stevenson et al., 2005; Wikelski and 
Cooke, 2006; Cooke et al., 2013; Madliger and Love, 2015) 
and have lacked syntheses of past successes and their com-
monalities (but see Cooke et al., 2014 for a discussion of suc-
cesses in the integration of behaviour, physiology and 
conservation). Thus, it appears that the field of conservation 
physiology may still be largely theoretical. We argue, however, 
that success stories in conservation physiology are accumulat-
ing. Moreover, these successes share commonalities that allow 
us to delineate themes that characterize the successful applica-
tion of conservation physiology and highlight where further 
growth is possible and required.

Here, we posit that conservation physiology has progressed 
from a nascent, theoretical discipline to an applied one with 
tangible successes. Specifically, we outline eight diverse topics 
spanning chemical contamination, integrative wildlife moni-
toring, nutritional management, disease control, entanglement 
and collision mediation, control of invasive species, fisheries 
management and ecotourism, where conservation physiology 
has resulted in measureable conservation successes. We con-
servatively define a success as a change in human behaviour, 
management or policy to the benefit of conservation that has 

been driven by physiological information. Although we do not 
provide an exhaustive review, this cross-section highlights the 
major areas in which conservation physiology has been suc-
cessful and demonstrates the important role that physiology 
can play across a broad range of conservation issues (Fig. 1). 
Finally, we draw on the common features of these successes to 
identify five emerging themes in the discipline that help to 
define its current status and breadth. Researchers or managers 
working within or considering the field of conservation phys-
iology as a framework (see Coristine et al., 2014) for their 
research activities or management strategies can use this foun-
dation to identify productive pathways forward and foster 
additional conservation successes.

Successes in conservation physiology
Toxicology informs regulatory approaches 
to environmental chemicals
Environmental toxicology probably represents the longest-
standing discipline linking physiological investigations to con-
servation (Stevenson et  al., 2005), with a classic example 
being that of dichlorodiphenyltrichloroethane (DDT) expo-
sure and biomagnification causing reproductive failure in 
birds of prey. Specifically, physiologists identified how the 
breakdown product of DDT inhibits Ca2+-ATPase in the shell 
gland, reducing the deposition of calcium carbonate to the 
eggshell and resulting in thinner eggshells and reproductive 
failure (Faroon et al., 2002). These discoveries led to a ban of 
DDT in many industrialized countries and the consequent 
recovery of the bald eagle (Haliaeetus leucocephalus), brown 
pelican (Pelicanus occidentalis), peregrine falcon (Falco pereg-
rinus) and osprey (Pandion haliaetus) in North America 
(Faroon et al., 2002). The DDT success story also spurred the 
development of other physiological end points used in the eco-
logical risk assessment of chemicals, a process that is ulti-
mately used to assess safety for wildlife (Dickerson et  al., 
1994). Physiological end points or biomarkers (indicators of 
a particular disease state or other physiological state of an 
organism) are now commonly used and range from acetylcho-
linesterase inhibition to oxidative stress status to immuno-
logical indices (Cajaraville et al., 2000; Martin et al., 2010; 
Beaulieu and Costantini, 2014). In amphibians, the most 
threatened vertebrate taxon (Stuart et al., 2004; Rohr et al., 
2008a), physiological end points such as circulating corticos-
terone and liver damage have been used as early warning signs 
of negative effects of fungicide (e.g. chlorothalonil) exposure 
(McMahon et al., 2011, 2012), and herbicide-induced immu-
nomodulation has been linked with elevated amphibian mor-
tality associated with trematode and chytrid fungal infections 
(Rohr et al., 2008b,c, 2013). As a result of such research on 
non-target freshwater vertebrates, regulations on fungicides 
have been altered to protect susceptible ecosystems better. For 
example, the Canadian Pest Management Regulatory Agency 
now requires products containing chlorothalonil to include 
advisory statements on risk-reduction measures that reduce 
surface water contamination, such as maintenance of buffer 
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Figure 1: Conservation physiology successes cover a diversity of taxa, ecosystems, landscape scales and physiological systems. For example: (A) Birds of 
prey, such as osprey, have rebounded following regulations on DDT. (B) Plague is being combated in the endangered black-footed ferret via a targeted 
vaccination programme. (C) Caribou and wolf populations are being effectively managed via physiological monitoring of scat. In the right photo, a scat 
detection dog locates samples for subsequent physiological processing. (D) Nutrition programmes support successful breeding in the critically 
endangered kakapo. (E) Ecotourism feeding practices are regulated for stingrays in the Cayman Islands. In the right photo, a blood sample is obtained 
from the underside of the tail to monitor multiple physiological traits. (F) Sensory physiology has informed shoreline lighting regulations for nesting sea 
turtles. (G) Physiological monitoring of incidentally-captured fishes can be accomplished through blood sampling (left photo), and recovery chambers 
have been designed that decrease the stress associated with by-catch in salmonids (right photo). (H) Physiological studies have identified native species 
that tolerate fire caused by exotic species (top panel) and recruit under low light conditions in heavily invaded forests (bottom panel) in Hawaii 
Volcanoes National Park. Photograph credits: Randy Holland (A); United States Geological Survey National Wildlife Health Center (B); Wayne Sawchuk and 
Samuel Wasser (C); Kakapo Recovery (D); Christina Semeniuk (E); Sea Turtle Conservancy (F); Cory Suski and Jude Isabella (G); and Jennifer Funk (H).
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zones between application sites and aquatic areas, and con-
trolled maximal application rates (Health Canada, 2011).

Toxicologists have also demonstrated the mechanisms by 
which endocrine disruptors cause vertebrate population 
declines (Vos et al., 2000). Much of this work began when 
researchers observed male fish producing vitellogenin (a pro-
tein normally synthesized by females during oocyte matura-
tion) and eggs in their testes. This feminization was associated 
with exposure to estrogenic substances, such as synthetic 
estrogen used in contraceptive pills (Jobling et  al., 1996, 
1998), and was supported by experimental evidence that syn-
thetic estrogen within the range observed in municipal waste 
waters can lead to the feminization of males, intersex males, 
altered oogenesis in females and population declines in fish 
(Kidd et  al., 2007). Likewise, pesticide exposure has been 
linked to disruption of reproductive and thyroid hormone 
production, reproductive impairment and disease in amphib-
ians and other vertebrates (Hayes et al., 2006; Rohr et al., 
2006; Rohr and McCoy, 2010; Hayes et al., 2011). The clear 
impacts of estrogens and endocrine disruptors on the sustain-
ability of wild vertebrate populations have encouraged the 
USA, Japan, European Union and Organization for Economic 
Co-operation and Development to establish testing 
approaches and regulatory frameworks to assess and manage 
the risks associated with chemicals that have endocrine-dis-
rupting potential (Hecker and Hollert, 2011).

Panels of physiological markers reveal 
health and stress in wild animals
‘Panels’ are suites of physiological measures (i.e. more than 
one measure) that provide comprehensive insight into the 
health and stress status of an individual, and are routinely used 
in human and veterinary clinical practice (Hindmarsh and 
Lyon, 1996; Thrall et al., 2012). For example, a wildlife faecal 
endocrine panel could include glucocorticoids, progestins, 
androgens and estrogens and sometimes thyroid hormones as 
well. There is a growing suite of analytical tests, including 
point-of-care devices that can be used in the field to generate 
real-time data (Stoot et al., 2014), sophisticated gene expres-
sion profiles generated from genomic analyses (e.g. gene arrays, 
chips) that provide insight on immune function, pathogen 
presence and metabolic state (Cruz et al., 2012), and novel 
measures related to oxidative stress (Beaulieu et al., 2013) or 
telomere length (Lewin et al., 2015; Young et al., 2015). As a 
result, there is no shortage of tissue-based assays available for 
assessing the health and physiological status of wildlife.

There have also been major innovations in our ability to 
collect non-invasive samples from a wide range of species. 
Given that faeces, urine, hair, feathers, sloughed skin and even 
respiratory vapour all contain molecules of physiological 
interest, these samples can be used non-invasively to assess 
health and stress in wild animals (Hunt et al., 2013; Dantzer 
et al., 2014). Faecal samples, for example, contain an array of 
steroid and thyroid hormones, as well as DNA from both prey 
and host species (Wasser et al., 2010; Vynne et al., 2014). 

Thus, analysis of faecal hormone titres produces a ‘faecal 
endocrine panel’ that can provide information on stress phys-
iology (e.g. glucocorticoids and mineralocorticoids), repro-
ductive status (progestins, androgens and estrogens) and 
nutritional state and metabolic rate (thyroid hormones; 
Wasser et al., 2011; Ayres et al., 2012; Vynne et al., 2014; Joly 
et al., 2015). When combined with faecal DNA analyses to 
confirm species, determine sex and identify individuals, the 
result is a powerful analytical tool that can identify different 
environmental stressors and their relative impacts. Indeed, the 
utility of multiple-measure panels is often in their ability to 
separate the effects of different stressors to identify the causes 
of health decline or stress, leading to concrete recommenda-
tions. For example, in woodland caribou (Rangifer tarandus 
caribou), a combination of faecal DNA, corticosterone and 
thyroid measures has helped to delineate the differential 
impacts of wolf predation vs. human-use patterns associated 
with oil sands development, leading to a de-emphasis on wolf 
removal efforts and increased attention to preserving the cari-
bou’s access to lichen (Wasser et al., 2011; Joly et al., 2015; 
personal communication from Dr Samuel Wasser, University 
of Washington). A similar approach using a panel of faecal 
reproductive, adrenal and thyroid hormone measures allowed 
Ayres et al. (2012) to compare the impacts of boat traffic and 
nutritional stress on Puget Sound killer whales (Orcinus orca), 
identifying preservation of the prey base (salmon) as the more 
important conservation priority.

Beyond faecal hormones, -omics tools (including transcrip-
tomics, proteomics and genomics) are increasingly being 
applied to conservation problems, enabling the rapid screening 
of thousands of genes related to physiological and biochemical 
end points, such as immune function and metabolic state. For 
example, Miller et al. (2011) took minimally invasive gill biop-
sies from migrating sockeye salmon (Oncorhynchus nerka) 
that were released with telemetry transmitters, enabling 
researchers to identify physiological signatures associated with 
failed migrants. Transcriptomics has also been used for envi-
ronmental screening of condition, immunity and stress in steel-
head (Oncorhynchus mykiss) on the Columbia River (Connon 
et al., 2012). These tools have helped to identify suites of fac-
tors that are associated with environmental stressors and dis-
ease in wild salmonids, thus improving management actions by 
allowing practitioners to refine and justify harvest restrictions 
in Canada, leading to a greater balance among different stake-
holder groups (Cooke et al., 2012). It is anticipated that as 
more multipanel assessments become part of long-term routine 
monitoring, it will be possible to develop mechanistic models 
to determine better how human activities influence a multitude 
of animal populations.

Nutritional physiology improves manage-
ment of captive and wild populations
The physiology underlying the nutritional needs of animals has 
been well explored in the context of agriculture (McDonald 
et al., 2002) and zoos (Dierenfeld, 1997), and—particularly 
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for mammals—there are well-established markers available to 
allow assessment of nutritional health (e.g. Underwood, 1977; 
McDowell, 1989). In the context of conservation, nutritional 
physiology is particularly important in captive rearing pro-
grammes, in captive rearing for release programmes and in 
heavily managed populations, where food supplements may be 
provided to avoid disease and improve performance (Tracy 
et al., 2006). Specifically, captive populations are a critical 
component of final-stage species conservation and have been 
somewhat successful for recovering critically endangered spe-
cies and for supplementing populations (Philippart, 1995; 
Snyder et al., 1996). Captive animal nutrition (including cap-
tivity for conservation purposes) is often developed through 
trial and error, combining field observations with ad hoc choice 
experiments, with reference to existing captive diets or nutri-
tional information for related laboratory model species 
(Dierenfeld, 1997). Although health and performance provide 
the most appropriate measure of success, sometimes simply 
identifying suitable food can be a challenge (e.g. Honan, 2008). 
In other cases, physiological studies can be used to simplify 
captive diets. For example, tuatara (Sphenodon spp.), reptiles 
endemic to New Zealand, have been observed to eat seabird 
chicks in the wild, resulting in free-living individuals having 
high plasma levels of polyunsaturated fatty acids (Cartland 
et al., 1994; Cartland-Shaw et al., 1998). Although dietary 
supplementation with fish oil modified the plasma composi-
tion, this did not affect growth rate, metabolic rate or survivor-
ship, requiring no change to the diet in captivity (Blair et al., 
2000), and no specific changes to captive diets were made (per-
sonal communication from Dr Alison Cree, University of 
Otago).

Nutrition-based diseases may be avoided by the provision 
of micronutrients, and often the underlying cause of such dis-
eases can be detected only via a combination of physiology 
and pathology. For example, threatened black stilts (kāki, 
Himantopus novaezelandiae) are captive reared for release in 
New Zealand’s South Island, but there was initially consider-
able variation in hatching mortality between eggs collected 
from the wild (<15%) and those derived from captive birds 
(>50% perihatching mortality). Although the diet contained 
sufficient iodine for domestic poultry, increased incidence of 
goitres and low thyroxine titres in captive vs. wild birds led to 
a hypothesis of iodine deficiency. Supplementation of dietary 
iodine in the entire captive population increased serum thy-
roxine levels and led to consistently low perihatching mortal-
ity (Sancha et al., 2004), and remains part of the captive diet 
(personal communication from Dr Richard Maloney, New 
Zealand Department of Conservation).

Nutritional physiology can also inform management deci-
sions in wild and semi-wild populations at both the individual 
and landscape scales. For example, Bryant (2006) used doubly 
(isotopically) labelled water to estimate the energy expendi-
ture in both free-ranging and captive kakapo (Strigops hab-
roptilus). Mass-corrected estimates of energy expenditure are 
used specifically to determine the supplementary feeding pro-
tocol for this critically endangered parrot. As the diet of both 

males and females is supplemented to achieve a threshold 
minimal mass for breeding, these data on energy expenditure 
allow managers to regulate the mass of birds in the approach 
to the breeding season to prevent females from crossing an 
upper threshold at which offspring become male-biased (per-
sonal communication from Daryl Eason, New Zealand 
Department of Conservation). At the landscape scale, under-
standing the physiology underlying threatened desert tortoise 
(Gopherus agassizii) nutritional requirements (Tracy et al., 
2006) has determined management decisions regarding habi-
tat quality (US Fish and Wildlife Service, 2011).

Finally, nutritional physiology can identify sublethal 
impacts that can be traced back to large-scale ecosystem pro-
cesses that, in some instances, have informed intervention. For 
example, the Laurentian Great Lakes have experienced wide-
spread changes in food web structure owing to overexploita-
tion, changes in habitat quality and introduction of non-native 
species (Mills et  al., 1994). Native lake trout (Salvelinus 
namaycush) populations have experienced dramatic popula-
tion declines, which are partly attributed to thiamine (vitamin 
B1) deficiency arising from a switch to consumption of non-
native alewife (Alosa pseudoharengus), which contain high 
levels of thiaminase that breaks down thiamine (Brown et al., 
2005). After this problem was identified (Krueger et al., 1995), 
fisheries managers were able to reduce populations of alewife 
in efforts to restore native lake trout populations, which has 
been somewhat successful as part of a multifaceted native res-
toration plan (Dettmers et al., 2012).

Principles of ecological immunology aid in 
disease control
An understanding of the physiological function of immune 
systems, and acquired immune mechanisms specifically, has 
been instrumental to the development of successful vaccina-
tion campaigns with dramatic conservation implications. The 
key precursor of a successful vaccination programme for a 
host species of conservation concern is demonstrating that the 
host has the physiological capability to acquire immunity 
upon exposure to either dead or attenuated pathogen, and 
that this enhanced immunity is greater than any immunosup-
pressive effects of the pathogen. As an example, amphibians 
are experiencing widespread population declines and extinc-
tions associated with chytrid fungal infections (Rohr and 
Raffel, 2010; Raffel et al., 2013; Venesky et al., 2014). Recent 
work revealed that repeated exposures of amphibians to chy-
trid increased lymphocyte abundance in hosts and lymphocyte 
proliferation when cultured with the dead pathogen. 
Moreover, immune memory stimulated by exposure to dead 
chytrid exceeded the immunosuppression caused by the fun-
gus, resulting in reduced chytrid loads and enhanced frog sur-
vival (McMahon et al., 2014).

The concept of induced adaptive immunity has been 
applied successfully to rescue several host species that experi-
enced declines from introduced pathogens. For example, the 
morbillivirus that causes rinderpest was introduced into 
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northwestern Africa in the 1880s and resulted in 90% mortal-
ity of domestic and wild ungulates (Mariner et al., 2012) and 
subsequent declines of their canid and felid predators (Dobson 
et  al., 2011). A thermostable vaccine was administered to 
domestic livestock throughout Africa and resulted in an elim-
ination of the disease from wild ungulates and a subsequent 
surge in lion and hyena populations (Dobson et al., 2011). 
When rabies outbreaks threatened the world’s rarest canid, 
the Ethiopian wolf (Randall et al., 2006), managers imple-
mented a baited oral vaccination campaign focused at the cor-
ridor between an outbreak and susceptible wolf sub populations 
and successfully prevented incursion of the epidemic into the 
vaccination zone (Haydon et  al., 2006). Likewise, plague 
caused by the introduced bacterium Yersinia pestis is consid-
ered a factor in the declines of prairie dogs and the black-
footed ferret, possibly the most endangered mammal in North 
America. Laboratory studies revealed that a vaccine conferred 
protection against Y. pestis, and agencies have now widely dis-
tributed vaccine-laden bait and are tracking the recovery of 
prairie dog and ferret populations (USGS, 2011). Finally, the 
discovery of persistence of maternal antibodies in chicks of a 
long-lived colonial seabird species, the Cory’s shearwater 
(Calonectris borealis), has influenced the design of vaccina-
tion programmes to protect nestlings of Procelariiforms 
(shearwaters, albatrosses and petrels) against recurrent epizo-
otics in breeding colonies (Garnier et al., 2012). Specifically, 
female albatross species threatened by avian cholera 
(Pasteurella multocida) on Amsterdam Island, southern Indian 
Ocean are being vaccinated to allow transmission of persist-
ing maternal antibodies to their chicks over several breeding 
attempts (Weimerskirch, 2004; Garnier et al., 2012; Ramos 
et  al., 2014; personal communication from Dr Thierry 
Boulinier, Université Montpellier). In summary, these exam-
ples emphasize the value of understanding immunology in a 
physiological context and, subsequently, implementing vac-
cines to manage threatened host species over vast geographi-
cal regions.

Sensory-based conservation strategies 
mitigate human–wildlife conflicts
Sensory physiology has guided conservation management in 
diverse scenarios, dictating strategies that exploit sensory 
modalities either to attract animals to desirable locations or to 
deter them from undesirable ones (Cooke et  al., 2013). 
Environmental alterations resulting from anthropogenic 
activities can create novel sensory cues (visual, auditory, olfac-
tory, etc.) that mimic naturally occurring signals (Robertson 
et al., 2013) or create features that are not easily detectable 
and can lead to collisions or entanglement (Martin and 
Crawford, 2015). Sensory-based interferences have been doc-
umented in relationship to a variety of structures and objects, 
such as light sources (Gaston et al., 2012), fishing nets and 
lines (Southwood et al., 2008), marine debris (Horváth et al., 
2009), wind turbines (Kuvlesky et al., 2007), windows (Klem, 
2009), power lines (Alonso et al., 1994) and reflective solar 
panels (Horváth et al., 2009). Overall, the associated negative 

consequences for wildlife of such sensory traps often manifest 
as suboptimal choices of habitat, mates, migration routes or 
food and, in some cases, death (Schlaepfer et al., 2002).

A consideration of sensory physiology has allowed manag-
ers and industries to alter structures and equipment to mini-
mize influences on wildlife by tailoring aversion measures to 
the sensory capacities of targeted wildlife (Madliger, 2012; 
Martin and Crawford, 2015). Specifically, the measurement of 
visual and auditory sensitivities has pinpointed the most effec-
tive strategies for deterring wildlife. This approach has been 
particularly successful in the fishery sector, where acoustic 
alarms have been designed to take advantage of the auditory 
sensitivities of aquatic mammals, subsequently reducing inci-
dental captures (i.e. by-catch; Cox et al., 2007). This is critical 
to conservation because estimates of total global by-catch are 
as high as 38.5 million tonnes per year (Davies et al., 2009) 
and thus, mitigation measures based on targeted sensory 
approaches can have far-reaching implications for wildlife 
incidentally influenced by fishing practices. For example, 
‘pingers’, which create continuous bursts of sound, have been 
implemented in the US Northeast gillnet fishery and have 
reduced harbour porpoise (Phocoena phocoena) by-catch 
rates by 50–70% (Palka et  al., 2008). Likewise, in the 
California drift gill net fishery, pingers reduced beaked whale 
(Ziphiidae spp.) by-catch to zero (Carretta et al., 2008) and 
have significantly decreased incidental captures of short-
beaked common dolphins (Delphinus delphis) and California 
sea lions (Zalopbus californianus; Barlow and Cameron, 
2003). In the context of hydropower facilities, a host of stim-
uli, such as strobe lights, high-intensity sound and bubble cur-
tains (tactile deterrents) have been used to prevent 
impingement or entrainment of fishes (Noatch and Suski, 
2012). Other acoustic alarms that use low frequencies and 
harmonics have also reduced whale collisions with cod 
(Gadus morhua) and capelin (Mallotus villosus) fishing gear 
in Newfoundland, Canada (Lien et al., 1989). Beyond noise-
based mitigation measures, there is extensive research into 
gear modifications that can exploit other sensory systems 
through olfactory, visual and chemosensory cues to decrease 
incidental captures in cetacean, avian, sea turtle and elasmo-
branch species (Brothers et  al., 1999; Pierre and Norden, 
2006; Wang et al., 2010; Chosid et al., 2012; Jordan et al., 
2013).

A sensory-based approach has also been applied to the 
problem of avian collisions with buildings. Birds are particu-
larly vulnerable to collisions with human structures because 
their high-resolution vision is limited to the lateral view, 
lighted buildings can act as an attractant (Martin, 2011), and 
they are unable to distinguish the reflection of vegetation in 
mirrored surfaces from natural features (Klem et al., 2009). In 
the USA alone, annual mortality caused by building collisions 
is estimated to be between 365 and 988 million birds (Loss 
et al., 2014), and collisions are thought to represent the sec-
ond largest cause of anthropogenically linked mortality in 
birds worldwide (Klem, 2009). However, a number of 
approaches based on knowledge of the visual perception of 
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birds can reduce window collisions by nearly 60% (Klem and 
Saenger, 2013). Fritted (patterned) glass, uniformly spaced 
decals and ultraviolet-absorbing and -reflecting films targeted 
to wavelengths visible to birds effectively reduce avian colli-
sions with buildings (Klem, 2009; Klem and Saenger, 2013). 
Importantly, many major cities, including Toronto, Vancouver, 
Chicago, New York City and San Francisco, are incorporating 
bird-friendly, sensory-based guidelines into legislation, devel-
opment plans and ‘lights out’ awareness programmes to mini-
mize mortality of avian species caused by building collisions, 
particularly during migratory periods (City of Chicago, 2007; 
City of Toronto, 2007; New York City Audubon Society, 
2007; San Francisco Planning Commission, 2011; City of 
Vancouver, 2015). In addition, larger federal programmes in 
the USA, such as Leadership in Energy and Environmental 
Design (LEED), which provides certification for green build-
ings, have also begun to provide credits for building designs 
that include high-visibility facades for bird-collision reduction 
(US Green Building Council, 2015). In another vision-based 
conservation strategy, federally listed sea turtle hatchlings that 
are disoriented by shoreline lighting have benefited from regu-
lations in Florida and South Carolina aimed at altering the 
intensity and wavelengths of light sources based on the visual 
sensitivities of affected species (Lohmann et al., 1997; Salmon, 
2006).

Physiological knowledge aids in control of 
invasive species and subsequent restoration
Invasive species are considered to be a leading cause of animal 
extinctions worldwide (Clavero and Garcia-Berthou, 2005) 
and can have many complex and often negative ecological and 
evolutionary impacts across taxa (Vitousek et  al., 1997; 
Wilcove et al., 1998; Pimentel et al., 2000; Vilá et al., 2011). 
Although the concept of conservation physiology has been 
applied most directly to the study of native species threatened 
by environmental change, it has also aided in the identifica-
tion of physiological traits of invasive species that can be har-
nessed to direct control and mitigation efforts and to predict 
further spread (Funk et al., 2008; Funk, 2013; Lennox et al., 
2015). Specifically, the application of physiology to combat 
invasive species typically identifies traits that impact whole-
organism function, such as metabolism, nutritional status or 
thermal tolerance (Chown, 2012). In this way, physiology can 
be used to determine management approaches that may best 
exploit a given trait, which weakens or eliminates the capacity 
of a species to invade a non-native habitat. For example, the 
thermal tolerances of wood-boring insects [e.g. Asian long-
horned beetle (Anoplophora glabripennis)] have been used to 
determine the minimal heat treatments required by the 
International Plant Protection Convention for phytosanitary 
treatment of wood packaging material (e.g. pallets and crates). 
The associated international phytosanitary standards (IPPC, 
2009), which allow for heat or fumigation as control mea-
sures, are estimated to have decreased infestation rates of 
wood and bark pests by 36–52% worldwide (Haack et al., 
2014). This reduction in infestation will decrease propagule 

pressure (i.e. the number of viable insects entering a new loca-
tion) and therefore the likelihood of subsequent invasion 
(Brockerhoff et al., 2014).

In other cases, a consideration of physiology has contrib-
uted to the control of invasive species in already-established 
locations by decreasing their ability to function or survive. For 
example, sea lamprey (Petromyzon marinus), which parasitize 
adult top-predator fish during the juvenile stage, colonized the 
Laurentian Great Lakes during the late 1900s and caused 
severe losses to sport and economically important fishes 
(Chapman and Bolen, 2015). Research conducted in the 
1960s–1970s indicated that application of the chemical 3-tri-
fluoromethyl-4-nitrophenol (TFM) inhibited ATP production 
and mitochondrial oxidative phosphorylation, thus shutting 
down aerobic respiration and causing mortality, while posing 
minimal health risks for other wildlife or humans (Menzie and 
Hunn, 1976; Hubert, 2003). According to the Great Lakes 
Fishery Commission (2015), the application of TFM, along 
with building barriers and trapping, has been a ‘remarkable 
success’, because it has reduced sea lamprey populations by 
90% in most areas of the Great Lakes.

A consideration of physiology has also refined manage-
ment decisions involving use biological control agents. For 
example, the Tamarix leaf beetle, Diorhabda spp. 
(Chrysomelidae), was released in the USA to control Tamarix 
(DeLoach et al., 2003), an invasive tree/shrub that has nega-
tively impacted biodiversity, water resources and ecosystems 
functions in arid and semi-arid riparian ecosystems of the 
western USA and Northern Mexico (Shafroth et al., 2005). 
Ongoing research has identified geographical gradients in 
plant tolerance to herbivory, such that Tamarix populations 
from warmer climates are more susceptible to defoliation by 
Diorhabda than populations from cooler climates (Williams 
et al., 2014). Gradients in herbivory tolerance appear to be 
related to specific physiological traits, such as the allocation of 
recent photosynthates to growth and labile carbon storage, 
which may make Tamarix genotypes in some regions more 
susceptible to biocontrol than others (Hultine et al., 2015). 
Specifically, riparian restoration priorities are currently being 
targeted in Arizona based on the identification of Tamarix 
carbon allocation strategies across broad, macrophysiological 
scales (Orr et al., 2014).

A consideration of the physiological differences among 
native and invasive plant species can also directly improve 
management practices (e.g. Funk et al., 2008; Funk, 2013). 
Physiological studies of light and fire tolerance have impacted 
management protocols in Hawaii Volcanoes National Park 
(HAVO), where managers are tasked with conserving large 
tracts of native forests that are threatened by invasive species. 
For example, shade-intolerant invasive grasses suppress the 
recruitment of native ferns and woody canopy species in mesic 
forests. Funk and McDaniel (2010) manipulated light levels in 
a disturbed forest and assessed species differences in photo-
synthetic rate, growth and survival. They concluded that low-
ering light levels by establishing canopy species may suppress 
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the growth of invasive grasses with no adverse effects on 
native woody species. The study identified several fast-grow-
ing native species ideal for restoration, and the resultant 
planting palette has been applied to restoration of 12–16 hect-
ares. Understanding the effect of light on seedling emergence 
and growth has also shaped how HAVO managers restore 
forests in the presence of a woody canopy invader. Girdling 
invasive fire tree (Morella faya) was found to be more effective 
in promoting native species than logging trees (Loh and 
Daehler, 2007, 2008). Logging increased light levels, which 
promoted invasion by fast-growing shade-intolerant exotic 
species, whereas the slow death of fire tree by girdling allowed 
establishment of native plants accustomed to partial shade. 
During the 1960s, the invasion of fire-adapted invasive grasses 
increased fire frequency 3-fold in seasonally dry woodland in 
HAVO. Given that these grasses are impossible to eradicate, 
fire will continue to hinder restoration efforts. When planting 
native species, managers now eschew previously dominant 
but fire-sensitive species (e.g. Metrosideros polymorpha) for 
fire-adapted native species. Studies of fire tolerance and colo-
nization potential after fire led to plant palettes for several 
large-scale restoration efforts in the park (Loh et al., 2007, 
2009; McDaniel et al., 2008).

Fisheries management is improved through 
physiological monitoring
Inland and marine fisheries resources are globally important 
as a food supply and are culturally and economically impor-
tant in many places for recreation. When coupled with anthro-
pogenic stressors, such as habitat destruction or alteration 
(e.g. construction of dams, land use change), pollution and 
climate change, a diversity of fishes have been experiencing 
population declines at both a local and global scale. Despite 
decades of regulation and oversight, many marine fishery 
stocks are currently being fully exploited or overexploited 
(FAO, 2012), while globally, freshwater fishes are among the 
most threatened taxa on the planet (Ricciardi and Rasmussen, 
1999; Dudgeon et al., 2006). This decline in abundance and 
richness speaks to the need for the development of novel tools 
and technologies to monitor the health of animals and provide 
effective mitigation strategies to maintain populations.

Studies related to the conservation of Pacific salmon 
(Oncorhynchus spp.) represent one of the most celebrated and 
relevant models of using animal physiology to achieve conser-
vation success. Historically, Pacific salmon were abundant on 
the west coast of North America and provided a host of criti-
cal ecosystem services ranging from a food source for humans 
to delivering nutrients to terrestrial ecosystems to cultural 
value (Janetski et al., 2009; Hocking and Reynolds, 2011). 
Owing to logging, dams, irrigation, commercial and sport 
fisheries, as well as increased human populations, Pacific 
salmon numbers have declined precipitously in the past cen-
tury, with a number of species and stocks throughout their 
range currently listed as threatened or endangered (Gresh 
et al., 2000; Ford, 2011; Quinones et al., 2014). Farrell et al. 

(2001a) used physiological response variables to demonstrate 
that towing non-target Coho salmon (Oncorhynchus kisuitch) 
captured as by-catch in commercial nets promotes physiolog-
ical recovery and increased post-release survival, even for fish 
that appeared moribund at the time of capture in gill nets 
(Farrell et al., 2001a,b), leading to regulations requiring gill 
net boats to have recovery boxes attached to vessels to facili-
tate recovery of coho by-catch. Likwise, Donaldson et  al. 
(2013) demonstrated that comparative physiology and radio-
telemetry could be combined with human dimensions surveys 
to address revival strategies for angled and released sockeye 
salmon (Oncorhynchus nerka), leading to public outreach 
activities intended to improve handling of fish that are to be 
released. In addition, Young et al. (2006) identified biomark-
ers correlating with physiological performance that could be 
used to predict whether individual fish were likely to reach 
spawning grounds compared with those that did not continue 
migrations, providing managers with a tool to identify 
instances where escapement targets may not be met because of 
en route mortality. Together, these studies, as well as others 
(e.g. Cooke et al., 2012), demonstrate how integrating physi-
ological tools into biological problems can achieve conserva-
tion success for an economically and ecologically important 
group of fish species.

The recent development of metrics to assess the whole-
animal response to capture stressors has also provided fisher-
ies managers with a simple yet effective method for defining 
capture stress and improving conservation activities. A num-
ber of fish species are captured by either recreational or com-
mercial harvesters and are subsequently released, owing to 
regulations mandating release (i.e. time of year, size) or a vol-
untary conservation-based ‘catch-and-release’ ethic (Davis, 
2002; Arlinghaus et al., 2007). However, during a capture 
event, fish can experience a range of different stressors, such 
as depth change, exercise, crowding and handling, all of 
which can lead to elevated levels of physiological stress 
(Farrell et al., 2001b; Suski et al., 2003). In extreme cases, the 
stress and disturbance related to capture can cause mortality, 
which can negate efforts to release captured individuals suc-
cessfully and can translate to negative population-level 
changes (Davis, 2002). Davis (2010) showed that fish have a 
number of ecologically relevant, involuntary reflex responses 
that are correlated positively with the magnitude of a physi-
ological stressor. As such, these reflex indices can be collected 
easily and rapidly in the field from a range of fish species, and 
subsequently, used to predict disturbance level and subse-
quent mortality using a process called Reflex Action 
Mortality Predictor (RAMP; Davis, 2007). For example, 
Raby et al. (2012) showed that RAMP scores, collected as 
part of a fishery mandating the release of non-target coho 
salmon (Oncorhynchus kisutch), were able to predict both 
mortality and behaviour of wild fish after release. As a result, 
the RAMP procedure provides a simple, inexpensive and 
effective protocol to collect data on fisheries mortality rates 
quickly and easily in the field that has been ground-truthed 
in  relationship to physiological parameters and provides 
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 information on how changes to fishery practices can trans-
late to improved survival for released individuals.

Monitoring of energetics and stress refines 
ecotourism practices
Ecotourism refers to a sector of the tourism industry that is 
nature based, rooted in environmental education and sustain-
ably managed (Blamey, 2001) and, ideally, represents an 
opportunity to promote the conservation of ecosystems or spe-
cies of interest while achieving economic benefits (Ellenberg 
et al., 2006). However, many of the activities associated with 
ecotourism can lead to disturbances in the behaviour, repro-
duction and persistence of terrestrial and aquatic wildlife 
(Newsome et al., 2005). Measures of physiological traits have 
allowed for the relatively rapid assessment of these effects in a 
diversity of wildlife and, most importantly, in many instances 
have enabled researchers to make management recom-
mendations that can reduce the associated impacts on sensitive 
populations.

A particularly strong example of the power of physiologi-
cal measures for the assessment of effects and subsequent 
refinement of the ecotourism industry focused on southern 
stingrays (Dasyatis americana). This species is the basis of a 
feeding attraction at ‘Stingray City Sandbar’ (SCS) in the 
Cayman Islands that brings in more than 1 million tourists 
annually. Stingrays at SCS are part of a wild population, but 
can be subjected to up to 2500 tourists simultaneously (from 
up to 40 boats) participating in diving, snorkelling, touching 
and feedings (Semeniuk et al., 2007). By comparing stingrays 
inhabiting tourist sites and non-visited sites, Semeniuk et al. 
(2009) showed that animals exposed to ecotourism had lower 
haematocrit, lower total serum protein concentrations and 
reduced antioxidant capacity, indicating negative physiologi-
cal consequences of tourism operations. In addition, fatty acid 
profiles of stingrays fed the non-natural diet associated with 
tourism activities did not obtain a nutritional lipid composi-
tion comparable to prey eaten in the wild, with potential con-
sequences for growth, immune function, parasite and disease 
prevalence, and ultimately, survival (Semeniuk et al., 2009). 
Based on tourist surveys and the predicted health effects from 
the physiological studies, Semeniuk et al. (2010) then devel-
oped an integrated system dynamics model for the manage-
ment of tourist–stingray interactions at SCS, which predicted 
the state of the tourism attraction over time in relationship to 
stingray population size, life expectancy and tourist visitation 
under various management scenarios. These findings allowed 
for management recommendations directly to Caymanian 
stakeholders that included decreasing the amount of artificial 
food to promote natural foraging, changing the composition 
of supplemented food, continued monitoring of fatty acid lev-
els as a bioindicator, limiting total numbers of boats and peo-
ple to eliminate crowding, and expanding tourism sites 
(Semeniuk et al., 2007, 2009, 2010; Semeniuk and Rothley, 
2008). Overall, this approach enabled regulators to choose 
management plans that would ensure tourist satisfaction and 
continued visitation despite stricter regulations that benefit 

wildlife (personal communication from Dr Christina 
Semeniuk, University of Windsor). Taken together, these stud-
ies have inspired a call for change in policies for recreational 
marine ecotourism to minimize the impacts on population 
health for rays in other areas, such as the Mediterranean, 
Southeast Asia and Africa (Lloret, 2010; Corcoran et  al., 
2013; Ward-Paige et al., 2013), as well as for other marine 
fishes (e.g. Hammerschlag et al., 2012).

Many other species targeted specifically by or indirectly 
exposed to the tourism industry have also been assessed using 
diverse physiological tools. For example, endangered yellow-
eyed penguins (Megadyptes antipodes; Ellenberg et al., 2007), 
juvenile hoatzins (Opisthocomus hoazin; Müllner et al., 2004) 
and Western capercaillie (Tetrao urogallus; Thiel et al., 2008) 
in areas with tourism exposure show higher levels of gluco-
corticoids (i.e. stress hormones) than individuals in undis-
turbed sites. In many cases, glucocorticoid levels and heart 
rate telemetry metrics have correlated with reproductive and/
or survival parameters that justify regulation of tourism activ-
ities based on life-history stage, location and intensity (i.e. 
distance) for avian species (Müllner et al., 2004; Ellenberg 
et al., 2006, 2007). In particular, this type of work in yellow-
eyed penguins (Ellenberg et  al., 2006, 2007), one of the 
world’s rarest penguin species, has improved visitor informa-
tion panels and viewing hides for tourists, and breeding areas 
are routinely closed to access during the breeding season (per-
sonal communication from Dr Ursula Ellenberg, La Trobe 
University). In addition, at a viewing site where visitors must 
walk along the beach to access viewing hides (Sandfly Bay, 
New Zealand), a volunteer warden programme has been 
coordinated by the New Zealand Department of Conservation 
to keep visitors out of breeding areas and to reduce disruption 
of penguin landing (personal communication from Dr Ursula 
Ellenberg, La Trobe University). Overall, the measurement of 
physiology has provided robust biomarkers of condition and 
disturbance level that can refine ecotourism activities to mini-
mize impacts on wildlife.

Emerging themes and conclusions
Conservation physiology goes beyond 
documenting change
The success stories we have outlined indicate that conserva-
tion physiology is, in many cases, fulfilling the goal outlined in 
its most recent definition, which places specific emphasis on 
‘solving conservation problems across the broad range of 
taxa’ (Cooke et al., 2013). In addition to identifying impacts 
of disturbance or environmental change, physiology has 
allowed managers to delineate and prioritize mitigation strat-
egies, often because physiology provides mechanistic insight 
into the causes of change (Carey, 2005; Wikelski and Cooke, 
2006). As a result, conservation physiology has allowed for 
targeted strategies that can: (i) limit anthropogenic activities 
in space, time or intensity (e.g. yellow-eyed penguin ecotour-
ism); (ii) focus strategies to target certain life-history stages or 
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aspects of ecology/habitat (e.g. control of invasive sea lam-
prey); (iii) control the spread of disease (e.g. rinderpest eradi-
cation in Africa); and (iv) alter human structures and activities 
to limit influences on wildlife (e.g. window redesign to limit 
bird strikes). Moving forward, we propose that conservation 
physiology be viewed more strongly as a set of tools for 
addressing, rather than merely documenting, conservation 
issues.

The tools available and contributing to the 
field are more diverse than glucocorticoids
Although measurements of stress hormones (i.e. glucocorti-
coids) dominate the conservation physiology literature for 
vertebrates (Lennox and Cooke, 2014), the successes we have 
identified are varied and rely on diverse physiological traits 
related to immunity, nutrition, toxicology, sensory physiology, 
oxidative status, haematology, metabolism and reproduction. 
Thus, rather than defaulting to the measurement of stress hor-
mones, which are often highly context dependent and difficult 
to interpret (Breuner et al., 2008; Bonier et al., 2009; Madliger 
and Love, 2014), conservation physiologists should incorpo-
rate additional measures into their panels. Using physiological 
measures that provide meaningful information, rather than 
assuming that any disturbance will be reflected unambigu-
ously in stress levels, will push conservation physiology fur-
ther towards the diverse discipline it has been proposed to be 
(Wikelski and Cooke, 2006; Cooke et al., 2013), in terms of 
both on-the-ground conservation and the accumulation of a 
literature base that can benefit evidence-based conservation.

Conservation physiology approaches can be 
transferable among species, locations and 
times
In our experience, physiological approaches to conservation 
are sometimes criticized for being species, site or time specific, 
thereby limiting the general utility of the solutions. Although 
in some cases management strategies may be very specialized, 
the outlined successes indicate that conservation physiology 
has not suffered from a lack of transferability in many areas. 
For example, toxicological research on pesticides and other 
endocrine-disrupting chemicals has had far-reaching conser-
vation implications for birds of prey and aquatic wildlife 
worldwide. Likewise, sensory physiology work that has 
helped to identify window designs that prevent bird strikes 
has benefited hundreds of species of migratory songbirds in 
cities throughout North America, and vaccination campaigns, 
such as the targeted programme for rinderpest, have eradi-
cated disease from multiple ungulate species across entire con-
tinents. Importantly, conservation physiology approaches are 
contributing to both reactive conservation, such as the prob-
lem solving associated with sensory interferences, disease epi-
demics, ecotourism and fisheries by-catch, and proactive 
conservation, such as the modelling of invasive species spread, 
biological control of invasive species, health and reproductive 
monitoring, and forecasting of how organisms will respond to 

climate change or other environmental alterations. Finally, the 
knowledge gained through general studies in physiological 
ecology and evolutionary physiology continues to inform the 
rapid development of tools for conservation physiology, and 
many more opportunities are available to advance this devel-
opment further (Madliger and Love, 2015).

Highly targeted solutions can allow for 
human use while simultaneously benefiting 
imperiled populations
Given that physiology can impart the ability to pinpoint the 
mechanism behind a conservation issue (Carey, 2005), tech-
niques can often be highly targeted to accomplish conserva-
tion goals in the most parsimonious way possible. As a result, 
many solutions based on physiological knowledge have 
allowed human use or activity to continue to occur, while ben-
efiting or ameliorating conflicts for wildlife. For example, 
recovery techniques, harvesting regulations and deterrents 
used in the fishery sector have initiated strategies that simulta-
neously allow harvest and maintenance of wild populations of 
commercially important fish species while minimizing impacts 
to non-target species. The sensory-based modifications to win-
dows and shoreline lighting that have benefited migratory 
birds and endangered sea turtles, respectively, continue to 
allow for building facades and lighting of structures to main-
tain aesthetic and human use. Finally, the physiological 
knowledge gained from studies in the ecotourism industry has 
refined practices so that tourist visitation can continue while 
minimizing negative influences on wildlife such as yellow-eyed 
penguins and stingrays. Overall, the incorporation of physiol-
ogy has provided concrete evidence for how and why conser-
vation strategies are necessary, allowing for justification of 
strategies, maintenance of stakeholder relationships and ben-
eficial changes for humans and wildlife.

Evidence of success can be difficult to find in 
primary literature, but it is gradually and 
continuously occurring
A repeated lesson across the above studies has been that, 
although policy changes can often be slow and incremental, 
change occurs if very clear recommendations are persistently 
brought to managers, mass media and/or policy-makers. As 
with any conservation endeavour, changes in human behav-
iour, management or policy can take time because of logisti-
cal, monetary and dissemination constraints. As a result, the 
identification of success stories where physiological work led 
to downstream management effects often required the piecing 
together of multiple, sometimes disparate, studies. In many 
cases, conservation results were not easily accessible through 
searches of the primary literature and required direct com-
munication with researchers or practitioners, or searches of 
government websites and other documents. However, conser-
vation physiology has been accumulating success stories prior 
to its formal description as a discipline, and we argue that it is 
keeping pace with other more recent subfields of conservation 
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biology, such as conservation behaviour. Overall, we support 
a recent suggestion by Cooke (2014) that the single biggest 
challenge for conservation physiology is to ensure that find-
ings are relevant to practitioners (Cooke and O’Connor, 
2010), but we advocate that the highlighted successes provide 
optimism regarding our ability to overcome this impediment.

Conclusion: conservation physiology is 
progressing past theoretical and proposed 
applications
The potential applications of a physiological approach to con-
servation are well established (Carey, 2005; Wikelski and 
Cooke, 2006; Cooke et al., 2013), and a theoretical frame-
work has recently been proposed to guide progression of the 
field further by defining information flows within and between 
science and policy-makers (Coristine et al., 2014). Although 
many of the concrete successes in the field have occurred in 
animal systems, the potential for success in plants is clear and 
also gaining momentum. Although a recent bibliographic 
analysis concluded that, from a publication perspective, the 
overall pace of integration between conservation and physiol-
ogy has been slower than the opportunities would potentially 
warrant (Lennox and Cooke, 2014), the concerted summary 
of successes provided here indicates that conservation and 
physiology have been well integrated in diverse, far-reaching 
and beneficial ways that may not be readily apparent from a 
standardized literature search. Moving forward, further suc-
cess will be fostered by linking individual-level physiological 
traits with population- and species-level phenomena (Cooke 
and O’Connor, 2010; Cooke et al., 2013). In addition, many 
successful strategies have come and will continue to be devel-
oped from merging multiple approaches with conservation 
and physiology, such as behaviour, genetics, social science and 
medicine. In this way, conservation physiology is becoming a 
body of work that is not defined by one type of approach, 
physiological measure, taxa or conservation issue, but by the 
diversity it encompasses. Most importantly, the success stories 
discussed here illustrate that physiological knowledge contin-
ues to have the potential to make considerable contributions 
to conservation, that it has been doing so for decades and that 
it will continue to make broad strides during a time when its 
diversity should be seen as an enormous benefit to global con-
servation goals (Tallis and Lubchenco, 2014).
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