Ecology Letters, (2016) 19: 98-108

REVIEW AND

Suski¹

Freshwater biota and rising pCO₂?

Caleb T. Hasler,¹* David Butman,² Jennifer D. Jeffrey¹ and Cory D.

Abstract

Rising atmospheric carbon dioxide (CO₂) has caused a suite of environmental issues, however, little is known about how the partial pressure of CO₂ (pCO₂) in freshwater will be affected by climate change. Freshwater pCO₂ varies across systems and is controlled by a diverse array of factors, making it difficult to make predictions about future levels of pCO₂. Recent evidence suggests that increasing levels of atmospheric CO₂ may directly increase freshwater pCO₂ levels in lakes, but rising atmospheric CO₂ may also indirectly impact freshwater pCO₂ levels in a variety of systems by affecting other contributing factors such as soil respiration, terrestrial productivity and climate regimes. Although future freshwater pCO₂ levels remain uncertain, studies have considered the potential impacts of changes to pCO₂ levels on freshwater biota. Studies to date have focused on impacts of elevated pCO₂ on plankton and macrophytes, and have shown that phytoplankton nutritional quality is reduced, plankton community structure is altered, photosynthesis rates increase and macrophyte distribution shifts with increasing pCO₂. However, a number of key knowledge gaps remain and gaining a better understanding of how freshwater pCO₂ levels are regulated and how these levels may impact biota, will be important for predicting future responses to climate change.

Keywords

Acidification, climate change, freshwater ecology.

Ecology Letters (2016) **19**: 98–108

INTRODUCTION

Climate change is an ongoing phenomenon that has led to numerous environmental issues. Since the industrialisation era (beginning ~ 1850), atmospheric levels of carbon dioxide (CO₂) have increased by 40% (Hartman et al. 2013), and this has resulted in a host of climate-related changes to the planet including increased air and surface water temperature, droughts, receding glaciers and permafrost, extreme weather events, rising sea levels and ocean acidification (Rhein et al. 2013). At a global scale, biota have responded to these changes and experienced altered physiological performance, phenological changes, shifts in distributions and extinctions (Sala et al. 2000; Walther et al. 2002; Parmesan & Yohe 2003; Root et al. 2003). The consequences of climate change are likely to persist, as anthropogenic sources of CO₂ continue to increase, potentially doubling the current atmospheric concentration of ~ 400 μ atm by the year 2100 (Ciais *et al.* 2013). Undoubtedly, as CO₂ rises, the severity of climate-linked environmental issues will increase, placing further stress on the globe's biomes.

Research into the impacts of rising atmospheric CO_2 and climate change on aquatic systems has largely focused on the marine environment, where the majority of research has been completed (Doney *et al.* 2009). Oceans have a long water residence time, coupled with a large surface area, and an

abundance of autotrophic organisms; therefore, oceans act as a sink for atmospheric CO₂ (Sabine *et al.* 2004). Specifically, the partial pressure of CO₂ (pCO₂) in the ocean parallels atmospheric levels of CO₂ positively due to absorption, and future increases in atmospheric CO₂ over the long term are predicted to result in an increase in CO₂ contained within the ocean (Ciais *et al.* 1995). Upon entering the marine environment, CO₂ results in an unavoidable decrease in pH through the production of carbonic acid (H₂CO₃), which deprotonates into bicarbonate (HCO₃⁻⁻) and hydronium (H₃O⁺), leading to the release of hydrogen ions and thus acidification of seawater. Ocean acidification is therefore an unavoidable outcome of rising atmospheric CO₂ that will persist, and likely increase, in the future (Doney *et al.* 2009; Feely *et al.* 2009).

Ocean acidification and elevated pCO_2 levels result in negative consequences for both ecosystem function and organismal biology (reviewed by Orr *et al.* 2005; Fabry *et al.* 2008; Munday *et al.* 2010). For example, proximate consequences of ocean acidification and elevated pCO_2 for tropical and temperate organisms include altered behaviour and physiology for marine fishes (e.g. Jutfelt *et al.* 2013; Munday *et al.* 2014), reduced calcification and growth rates in calcifying marine organisms (Orr *et al.* 2005), and altered performance, development and growth rates in crustaceans (Ross *et al.* 2011). Ultimate outcomes of ocean acidification may include declines in fish populations (Munday *et al.* 2010), and lower primary

²School of Environmental and Forest Sciences & Civil and Environmental Engineering, University of Washington, Seattle, WA 98125, USA *Correspondence: E-mail: cthasler@gmail.com

¹Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, W-503 Turner Hall, 1102 South Goodwin Ave, Urbana, IL 61801, USA

productivity due to shrinking abundance and diversity of phytoplankton (Flynn *et al.* 2012). Of note, however, is the variation in biotic responses to ocean acidification and some species have not responded as negatively as others (Doney *et al.* 2009). Taken as a whole, the biological consequences of ocean acidification and elevated pCO_2 may have major impacts on marine food webs, nutrient cycles and overall productivity.

Despite the research into the detrimental impacts of ocean acidification and rising pCO₂ on marine ecosystems, surprisingly little is known about the potential consequences of elevated atmospheric pCO₂ on freshwater environments. More specifically, global estimates of freshwater pCO₂ under future changes to atmospheric pCO2 are not yet known, and the proximate and ultimate outcomes of elevated atmospheric CO_2 on freshwater pCO₂ are difficult to predict (Ciais *et al.* 2013). This lack of information with respect to how freshwater pCO₂ will change as atmospheric CO₂ rises hinders our ability to make predictions related to the future impacts of elevated CO_2 , which also limits attempts to develop mitigation strategies. Thus, the overall goals of this synthesis are to: (1) provide an overview of the dynamics and mechanisms regulating pCO_2 in the freshwater environment; (2) present details for how freshwater pCO₂ levels may change in the future as a result of climate change; (3) review existing literature to understand how freshwater biota may be at risk from future changes in freshwater pCO₂ (and where appropriate, the concomitant change in pH); and, (4) identify future research directions to fill knowledge gaps.

CARBON DIOXIDE AND FRESHWATER ENVIRONMENTS

The total inorganic carbon in freshwater systems is comprised of free CO₂ (or H_2CO_3), HCO_3^- and carbonate (CO₃²⁻), and the percentage of each of these compounds is dependent on the pH of the water body; basic water contains a larger proportion of CO₃²⁻, while acidic water primarily contains free CO₂ (Wetzel 2001). In general, the total amount of free CO₂ (i.e. pCO_2) in freshwater is controlled by the water source (e.g. groundwater, run-off), the residence time of CO_2 in water, the gas transfer velocity (i.e. the ease at which atmospheric CO₂ dissolves into water, and vice versa, at the airwater interface), and the underlying geology of a water body (Wetzel 2001). In addition to these factors, pCO₂ in freshwater is also influenced by a number of other processes such as the presence of herbivores and fish (Atwood et al. 2013, 2014), the balance of heterotrophic and autotrophic activities (Sobek et al. 2003), terrestrial respiration (Cole et al. 2007), atmospheric CO₂ (Phillips et al. 2015), and landscape-scale factors such as the relative size of deciduous forests and grasslands (Maberly et al. 2013). For instance, the first order streams with high terrestrial respiration have high levels of dissolved CO₂ due to root respiration, however, should systems be in a calcium-rich landscape (e.g. limestone dominated regions), CO₂ is quickly transformed into calcium bicarbonate. Should similar first order systems be in a non-calciumdominated landscape, but are highly turbulent, much of the dissolved CO_2 will quickly outgas. Furthermore, the p CO_2 in small streams has been shown to be more closely linked to sources of groundwater, and as a watershed increases in size, the importance of subsurface flow towards supporting elevated CO_2 concentrations decreases (Hotchkiss *et al.* 2015). Essentially, there are several factors that can be considered when making predictions about the amount of CO_2 present in a freshwater system.

Due to the complexity of the interactions between biotic and abiotic factors, the amount of free CO₂ currently in freshwater environments varies widely. A study of global freshwater lakes found that pCO₂ ranged from 3.1-fold below to 16-fold above atmospheric pCO₂, with a mean of $\sim 1000 \ \mu atm - almost$ three times the current atmospheric level (Cole et al. 2007). Larger lakes tend to be closer to equilibrium with atmospheric CO_2 (~ 390 µatm) due to the long residence time and outgassing of CO₂, as, for example, the annual mean pCO2 measured in Lake Superior was $461 \pm 171 \mu atm$ (mean \pm standard deviation, SD) (Atilla et al. 2011) and in Lake Michigan values ranged from 250-500 µatm (Pilcher *et al.* 2015). In contrast, pCO₂ levels for lotic systems can vary widely depending on stream order, forest cover, precipitation and surface area (Butman & Raymond 2011; Kokic et al. 2015); lotic systems can also become highly supersaturated with CO₂, reaching partial pressures 10-15 times higher than atmospheric levels (Amazon River - Richey et al. 1980; Ottawa River - Telmer & Veizer 1999). Of the 6708 stream and river systems assessed at a global scale, 95% had a median pCO₂ level greater than atmospheric levels, and the average pCO₂ was found to be ~ 3100 μ atm, which is almost 8-fold above current atmospheric levels (Raymond et al. 2013). In addition, freshwater systems can experience daily and seasonal fluctuations in pCO₂ due to weather, aquatic photosynthesis and respiration, and changes in the amount of pCO₂ entering water bodies (Maberly 1996). For example, in a lake with high primary productivity in the English Lake District, pCO₂ was depleted to near zero during the day and was replenished at night (pH variation up to 1.8; Maberly 1996). Furthermore, in this same system, seasonal fluctuations resulted in levels that ranged from near zero in the late spring and summer to concentrations greater than 7-fold above the atmospheric concentration in the fall, winter and early spring (Maberly 1996; McDonald et al. 2013). Freshwater pCO₂ levels have also been shown to vary across large time spans due to climate. Diatom sediment records have demonstrated that freshwater pCO₂ levels, inferred from pH and alkalinity, varied across the entire Holocene period (Catalan et al. 2009). Clearly, with such variation in pCO₂ levels both within and across freshwater systems, there are a number of drivers responsible for influencing pCO₂ levels at present.

As shown above, inland waters are rarely, if ever, in a steady state of equilibrium with the atmosphere and are likely controlled in part by the ratio of autotrophic (producer) and heterotrophic (consumer) activity. In systems where nutrients are abundant, autotrophic photosynthesis (i.e. CO_2 consuming) can maintain freshwaters at pCO₂ concentrations below atmospheric levels. However, the balance of heterotrophic grazers, and higher trophic feeders can compensate for this autotrophy, increasing respiration (i.e. CO_2 producing) over short or long time scales. More importantly, biotic factors

may not always be directly involved in maintaining excess pCO₂ in lakes. McDonald *et al.* (2013) found that supersaturation of lake systems in the USA that also have positive net ecosystem production are more often maintained by hydrologic inputs of inorganic carbon (i.e. free CO₂, HCO₃⁻ and CO₃²⁻), and not inputs of organic carbon.

Across regions, changes due to climate, anthropogenic land use and the composition of the terrestrial biosphere will also affect aquatic carbon levels and potentially influence future levels of pCO_2 . Many of these changes are directly tied to the composition of dissolved organic carbon (DOC; i.e. broken down organic matter) within a stream environment, and the buffering capacity of surrounding soils. A potential major driver of freshwater pCO₂ is the presence and form of dissolved organic matter (DOM), as DOM can function as a source of hydrogen ions, acting as a pH buffer. The microbial respiration of organic matter (i.e. decomposition) can saturate aquatic systems with dissolved inorganic carbon (DIC) and lead to pCO₂ levels well above the level found in the open atmosphere, resulting in aquatic systems being net heterotrophic (i.e. CO₂ producing) (Sobek et al. 2003). In aquatic systems, the processes of photosynthesis and respiration within terrestrial and aquatic environments produce DOM. The resulting form of DOC from these photosynthesis and respiration processes significantly influences the aquatic system by driving levels of productivity and altering pCO₂ concentrations and the exchange of CO_2 with the atmosphere (Cai *et al.* 2003). For example, high-latitude ecosystems are experiencing warming, which can increase the depth of the active layer of soil and the duration of soil microbe activity, providing an opportunity for additional organic carbon to enter aquatic systems where it then undergoes photochemical oxidation and bacterial respiration (Kling et al. 1992; Cory et al. 2014). Changes in metabolic processes that result in more organic carbon entering aquatic systems may influence pCO₂ levels.

Another major factor controlling the level of carbon in freshwater and one that has been shown to influence freshwater pCO_2 is the productivity of terrestrial ecosystems in the catchment. Terrestrial productivity may increase due to changes in the concentration of atmospheric CO₂ and the dual effect of warming (Arneth et al. 2010; Reich et al. 2014). In fact, the increased accumulation of terrestrial biomass due to rising atmospheric CO₂ enhances the terrestrial uptake of carbon, which may lead to increases in soil carbon respiration (Arneth et al. 2010) and subsequently nutrient run-off (i.e. more dissolved CO₂ entering aquatic systems). However, it remains unclear whether future increases in atmospheric CO₂ will produce higher rates of terrestrial productivity and total carbon sequestration in forested (Norby et al. 2005) and agricultural ecosystems (Long et al. 2006). Under future conditions of both higher temperatures and CO₂ concentrations, increased rates of soil respiration (Davidson & Janssens 2006), coupled with potential shifts in water use efficiency from reduced stomatal conductance in leaves, may facilitate the movement of DIC in the form of CO_2 into aquatic systems. Although the physical transport of dissolved CO₂ from soils to streams has not yet been quantified, previous research suggests correlations with precipitation and stream pCO₂ concentrations (Butman & Raymond 2011; Donohue et al. 2013). Future precipitation conditions from shifting climate regimes are challenging to predict, but research suggests that riverine run-off will increase in northern latitudes and potentially decrease in tropical latitudes as a function of climate change (Dai et al. 2009). Increases in precipitation and run-off will provide an opportunity for additional DIC and DOC to enter the freshwater environment (Raymond & Saiers 2010), whereas decreases in precipitation may lead to reduced connectivity in freshwater systems, which may reduce the amount of pCO_2 in downstream environments. Additions of DIC can be a result of increased soil and root respiration and weathering, and the added carbon may fuel in situ mineralisation and heterotroph productivity (Raymond & Saiers 2010). Furthermore, in lacustrine environments, whole catchment productivity and terrestrial respiration have been identified as the underlying driver for pCO₂ in lakes (Maberly et al. 2013). Overall, increased terrestrial primary productivity as a result of the dual effect of warming and rising atmospheric CO₂, and the resulting increased amounts of DOC and DIC, suggest a rise in future levels of freshwater pCO₂ when the connectivity of terrestrial and aquatic systems remain intact.

Factors other than direct and indirect changes to atmospheric CO_2 may influence future freshwater pCO_2 levels, though little is known about these factors. For example, land use patterns affect both water and carbon cycles (Howarth et al. 1991; Humborg et al. 2004), and may dictate spatial and temporal patterns in the lability and characteristics of DOM. Agricultural practices can cause the proportion of labile carbon to range from 30 to 70% (Beyer et al. 1993; Jacinthe et al. 2004), which represents a considerable influence of land use patterns on freshwater systems. The conversion of terrestrial ecosystems to intensive agriculture has introduced additional organic carbon from soils and crop residues, but the impacts of agriculture are unclear. For example, increases in freshwater DOC have been identified as primarily being a result of increased productivity due to increased nutrients, which reduces pCO₂ (Wilson & Xenopoulos 2009). However, the residence time of this carbon (i.e. the increased DOC) is important to consider as seasonal stratification in lake systems and the variability in stream flow can quickly shift freshwater pCO₂ concentrations (Gupta et al. 2008). To further understand the impact of agricultural land use on freshwater DOC, Jacinthe et al. (2004) used a simple rainfall simulation study to demonstrate that runoff from agricultural systems had upwards of 35% labile carbon, with large rain events producing higher photosynthetic rates. Furthermore, altering the distribution of precipitation from spring to summer or fall could possibly increase DOC flux to streams from highly productive ecosystems during periods of soil carbon accumulation, which would have downstream effects for photosynthetic rates and metabolic activity (e.g. Clair & Ehrman 1996). Additional work is needed to quantify the increase in connectivity of the hydrologic system from soils to freshwaters due to agricultural land use and whether pCO_2 will be negatively or positively influenced, especially given potential trade-offs between DOC and the productivity of autotrophs and heterotrophs. The management of riparian systems within an agricultural landscape could prevent the decrease in freshwater pCO_2 (e.g. Abril et al. 2014), suggesting that with appropriate mitigation measures, pCO_2 in flowing systems controlled by agricultural practices could remain stable.

PREDICTING WHETHER pCO₂ LEVELS IN FRESHWATER WILL CHANGE IN THE FUTURE

Given the above noted complexities with how freshwater levels of pCO₂ are governed and the wide variation observed, predicting future levels of pCO₂ is difficult, but focused approaches on few factors have been undertaken. Using the Laurentian Great Lakes as a case study, Phillips et al. (2015) predicted that rising atmospheric CO₂ (assuming only atmospheric CO₂ as a controlling factor) would cause an increase in freshwater pCO₂ and a resulting decline in pH. Likewise, Sobek et al. (2005) predicted a modest positive trend in freshwater pCO₂ levels as rising water temperature was found to increase DOC. The degree to which freshwater pCO₂ levels will change, however, is likely also dependent on more than one factor, as changes in the residence time of CO₂ in water and the gas transfer velocities because of rising atmospheric pCO_2 (e.g. changes in precipitation rates, wind patterns, etc.) may also cause a change in freshwater pCO₂. It is also possible that increased atmospheric CO_2 will influence secondary factors (i.e. ecotype and water body type) differently. For example, differences in the response of arctic, temperate and tropical ecosystems may result in varied changes to freshwater pCO₂ levels (Kling et al. 1992; Sobek et al. 2003; Dai et al. 2009; Raymond & Saiers 2010). In general, understanding the factors that govern pCO₂ in freshwater and how they may change with rising atmospheric CO₂ are major hurdles that need to be overcome before potential outcomes can be determined (i.e. specific estimates of pCO2 levels for a range of freshwater environments). Lastly, the degree to which the variation in pCO₂ across freshwater systems will change is also unknown, however, one might predict that given similar variation in state variables (e.g. alkalinity, temperature, etc.), the variation in pCO₂ currently observed in freshwater systems will continue.

POTENTIAL EFFECTS OF CHANGING pCO₂ ON FRESHWATER BIOTA

As noted above, there is support from ecologists and biogeochemists that future levels of freshwater pCO₂ will potentially increase (Sobek et al. 2005; Phillips et al. 2015), however, given the uncertainties with predicting pCO_2 and the variation in pCO₂ across freshwater systems, it still remains unclear as to the direction of change for pCO_2 in freshwater, if any. Specific changes to freshwater biota following a possible increase or decrease in pCO₂ reflect a knowledge gap that previously has not been thoroughly studied or reviewed in freshwater-related climate change reviews. Making predictions about the biological responses of freshwater biota becomes difficult due to the lack of information about the future state of freshwater systems. Freshwater biota likely experience a wide range of pCO₂ levels on a daily or seasonal basis, suggesting that freshwater biota may have the capacity to tolerate fluctuations in pCO₂. Furthermore, because carbon is a major factor in ecosystem metabolism, community structure and competitive outcomes (Hessen *et al.* 2004), understanding both the biological responses and physiological tolerances to pCO_2 of biota will assist freshwater researchers with predictions about how trophic cascades, species distributions and population sizes may change with future levels of freshwater pCO_2 . For this synthesis, we have attempted to document the empirical findings directly related to freshwater changes in pCO_2 (and where appropriate, the concomitant change in pH) at the level of organisms, assemblages, communities and ecosystems.

Most research assessing changes in freshwater pCO₂ has focused on bottom-up processes, and on the consequences for freshwater phytoplankton - particularly green algae and cyanobacteria (Table 1). Algae are the basis for food webs and play key roles in aquatic energy production and respiration (Wetzel 2001). Furthermore, phytoplankton are indicators of environmental change in freshwater ecosystems (McCormick & Cairns 1994) and have been shown to specifically indicate changes in freshwater pCO₂ levels (Philibert & Prairie 2002; Low-Décarie et al. 2014). A principle concern for phytoplankton with respect to changing pCO₂ is how CO₂ will influence ecological stoichiometry (Sterner & Elser 2002) and thus, the amount of carbon (C), nitrogen (N) and phosphorus (P) available to phytoplankton (reviewed by van de Waal et al. 2010). In fact, several studies have found that varying levels of pCO₂ alter the ratio of C, N and P (Table 1); excess C relative to N and P reduces the nutritional quality of phytoplankton in nutrient-poor water bodies (Hessen et al. 2004). This change in the quality of phytoplankton has been shown to reduce growth in zooplankton, which may alter competitive advantages and community composition (Urabe et al. 2003; Urabe & Waki 2009; Verschoor et al. 2013; Verspagen et al. 2014a); however, mixed species diets appear to maintain growth in zooplankton exposed to high CO₂ (Urabe & Waki 2009). Should changes in pCO₂ alter nutritional quality at the base of freshwater food webs, there is the potential for consequences to the condition and health of higher level organisms.

Changing pCO₂ may impact several other important ecological processes. For example, increased primary production and biomass in nutrient-rich water bodies has been observed as a result of elevated pCO₂ (Schippers et al. 2004; Jansson et al. 2012; Low-Décarie et al. 2014, 2015), presumably because water bodies are no longer carbon limiting. Elevated pCO₂ also alters the phytoplankton community structure (Verschoor et al. 2013; Low-Décarie et al. 2015), and increases in the abundance of nitrogen-fixating cyanobacteria has been observed in some (Shapiro 1997; van de Waal et al. 2011; Verspagen et al. 2014a,b), but not all studies (Verschoor et al. 2013). Other studies have found that high pCO₂ results in increased photosynthesis rates (Hein 1997; Qiu & Gao 2002), as well as lower specific growth rates and oxygen generation rates in estuary phytoplankton (Ying et al. 2014). There is, however, the possibility that phytoplankton may abate negative consequences of elevated pCO₂ (reviewed by Low-Décarie et al. 2014). The carbon concentrating mechanism in green algae exposed to high pCO₂ over 1000 generations has been found to respond causing higher rates of photosynthesis and respiration (Collins & Bell 2004), and limitations to how

Paper	Study type	pCO ₂ gradient	Effect
Phytoplankton Collins & Bell (2004)	Laboratory	430 ppm and 1050 ppm	Green algae grown in high pCO ₂ had no specific adaptations Some lines showed elevated chlorophyll content and higher photosynthesis and respiration
Hein (1997)	Field	0.24–37.7 μ м (calculated free CO ₂)	Photosynthesis und respiration Photosynthesis by phytoplankton in low/moderate dissolved inorganic carbon (DIC) lakes was negatively influenced by low dissolved CO_2
Jansson et al. (2012)	Field collected water manipulated in laboratory	325–4379 µatm	CO ₂ availability enhanced primary productivity 10 times when compared to production at equilibrium Potential for unproductive, clear-water and humic lakes to be influences by rising atmospheric CO ₂
Low-Décarie et al. (2013)	Laboratory (addition of CO_2 + nutrients)	380 and 1000 ppm	Long-term selection experiments did not detect an evolutionary response in several phytoplankton species
Low-Décarie et al. (2015)	Laboratory (addition of CO_2 + nutrients)	665 and 2269 ppm	Dissolved CO ₂ concentrations can shape phytoplankton community structure in a predictable manner.
Qiu & Gao (2002)	Laboratory	5.97-11.97 µmol/L (free CO ₂)	Increased rate of photosynthesis and growth in carbon- limiting cyanobacteria blooms when exposed to elevated atmospheric CO ₂
Schippers et al. (2004)	Model based on C- limitation of two freshwater phytoplankton species	350–700 ppm	Doubling atmospheric CO ₂ was shown to have a doubling effect on productivity Potential for a larger effect than in marine systems due to an increase in the number of nutrient-rich and C-limiting systems
Shapiro (1997)	Whole-lake manipulation	Low CO ₂ vs. enriched CO ₂ (free CO ₂ concentrations implied by pH and not reported)	Blue-green algae reduce CO ₂ concentrations to levels only tolerable by them Green algae have a lower ability to use CO ₂ in low concentrations Observed responses to pH were caused by changes in CO ₂
Trobajo et al. (2014)	Laboratory mesocosm where pCO ₂ was manipulated	370, 5000, 10 000 ppm	Higher carbon content was found in a diatom <i>Phaeodactylum</i> <i>tricornutum</i> (Bohlin), but not in two other diatom species Optimal range of pCO ₂ and carbon content likely in between 5000 and 10 000 ppm for <i>P. tricornutum</i>
van de Waal et al. (2011)	Modelling and laboratory experiment	200, 1000–1250 ppm	 Toxic blue-green algae competitively excluded non-toxic blue- green algae by reducing CO₂ concentrations (exclusion reverses under light-limiting conditions) Cells strongly relied on CO₂ as their primary source for inorganic carbon
Verschoor et al. (2013)	Laboratory	380, 3000, 18 800 ppm	Elevated CO ₂ caused increased growth, leading to lower N and P concentrations, but no change in biomass Cyanobacteria did not outcompete green algae for inorganic carbon
Verspagen et al. (2014a)	Modelling and laboratory	200–1200 ppm (model) 0.5–2800 ppm (laboratory)	Rising CO ₂ intensified phytoplankton blooms in nutrient-rich systems (C-limiting switched to light-limiting) N and P became limiting and nutritional quality of
Verspagen et al. (2014b)	Modelling and laboratory	200, 1200 ppm	 phytoplankton decreased (i.e. C > nutrients) Model predictions conclude increased productivity reduces CO₂ more in nutrient-rich and low/moderate alkaline systems In dense blooms, C becomes limiting in low/moderate alkaline systems Rising CO₂ alleviates blooms from C limitation
Zooplankton Urabe et al. (2003)	Laboratory mesocosm where pCO ₂ was manipulated	360, 1500, 3600 ppm	Increasing pCO_2 increased algal abundance, but reduced P:C resulting in lower growth rates of <i>Daphnia</i> sp.
Urabe & Waki (2009)	Laboratory mesocosm where pCO ₂ was manipulated	360 and 2000 ppm	<i>Daphnia</i> sp. fed monospecific algae grown at high CO_2 had reduced growth rates, while <i>Daphnia</i> sp. fed multispecific algae grown at high CO_2 did not

Table 1 Studies that directly assess the relationships between pCO_2 levels and freshwater biota. Levels of pCO_2 (or concentrations of CO_2) have been presented as described in each study

(continued)

Table 1. (continued)

Paper	Study type	pCO ₂ gradient	Effect
Macrophytes			
Cao & Ruan (2015)	Mesocosm where pCO ₂ and temperature were manipulated	370, 1000 ppm	Increased pCO ₂ led to a rise in photosynthetic performance, growth, and clonal propagation of <i>Vallisneria natans</i> (Hara) Stolen elongation and bud number also increased under elevated pCO_2 and more biomass was found in the roots, stolons, and buds
Demars & Tremolieres (2009) Maberly <i>et al.</i> (2015)	Field study of multiple ground-fed river systems Field study along a natural gradient in pCO ₂	3- to 43-times atmospheric level (~ 1200–15 000 μatm) 0.46–0.09 μmol/L (free CO ₂)	Species composition was best related to pCO ₂ when compared to NH ₄ and PO ₄ and had the best predictive power <i>Berula erecta</i> (Koch) dominates CO ₂ -rich areas, as pCO ₂ decreases downstream, species use proportionately more HCO ₃
Madsen et al. (1996)	Laboratory mesocosm where pCO ₂ and HCO ₃ ⁻ were manipulated	1, 16, and 910 µм (free CO ₂)	 Several findings, including: Increased photosynthetic performance at low pCO₂, altered use of CO₂ and HCO₃⁻ for three species (<i>Elodea canadensis</i> (Michx.), <i>Callitriche cophocarpa</i> (Sendtn. ex Hegelm.), and <i>Ranunculus peltatus</i> (Schrank)); Increased root/shoot ratio with increasing pCO₂; Reduced rubisco activity, protein content, and chlorophyll content as pCO₂ increased
Malheiro et al. (2013)	Laboratory aquaria where temperature, light, and pCO ₂ were manipulated	0.01–2.50 µmol/L (free CO ₂)	pCO ₂ had more of an influence on growth rate, dry matter content, and length of internodes compared to light and temperature pCO ₂ with light and temperature also influenced total chlorophyll content and chlorophyll a : b ratio (respectively)
Titus & Andorfer (1996)	Mesocosm where pCO ₂ and pH were independently controlled	Atmosphere, 3.2-and 10-times ambient pCO ₂	Al and Fe accumulated 5.5- and 7-fold (respectively) in shoots of <i>Vallisneria americana</i> (Michx) when exposed to elevated pCO ₂ and pH 5 P accumulated 6- to 11-fold in shoots when plants grown in less and more fertile sediments and exposed to elevated pCO ₂ Plant growth increased at high pCO ₂ and low pH and reduced tissue N
Vadstrup & Madsen (1995)	Field study along a natural gradient in pCO ₂	500-1000 µatm above ambient	Increased growth of <i>Elodea canadensis</i> and <i>Callitriche</i> <i>cophocarpa</i> when CO_2 elevated
Yan et al. (2006)	Mesocosm where pCO_2 was manipulated	390, 1000 ppm	Elevated pCO ₂ accounted for ~ 75% of above ground biomass and ~ 25% of below ground biomass in <i>Vallisneria</i> <i>spinulosa</i> Clonal growth was positively affected by pCO ₂ and a dense growth pattern was induced
			Phosphorous was greater in all tissues, while N was only higher in leaves and turion
Macroinvertebrates Blinn & Sanderson (1989)	Field study	550 mg/L (dissolved CO ₂)	Absence of Trichoptera, Lepidoptera, Megaloptera, Neuroptera, and Anisoptera larval stages suggest that either high pCO ₂ or high alkalinity restrict the distribution of larvae in freshwater.
O'Brien & Blinn (1999)	Field study along a natural gradient in pCO_2 and controlled laboratory exposures of a similar range of pCO_2	20–480 mg/L (dissolved CO_2)	Pyrgulopsis montezumensis (Hershler) tolerated pCO ₂ concentrations up to 400 mg/L for 11 days 40% mortality was found for snails exposed to pCO ₂ of 728 mg/L after 3 days, and 100% mortality after 24 h when exposed to 1200 mg/L of pCO ₂ Distribution of snails in the natural environment was dictated by both CO ₂ and substratum
Roberts & Barnhart (1999)	Laboratory where pCO ₂ was manipulated	0, 20 000, and 50 000 ppm	Low pH and high pCO_2 increased transformation success of <i>Anodonta suborbiculata</i> (Say) glochidia
Fishes Ou et al. (2015)	Laboratory where pCO ₂ was manipulated	400, 1000, and 2000 µatm; and 400–2000 µatm (over a 24 h period)	Size, growth rates, and production efficiencies of early life stage Pink Salmon (<i>Oncorhynchus gorbuscha</i> , Walbaum) reduced during rearing in freshwater

much elevated pCO_2 will alter biomass growth have been found (Trobajo *et al.* 2014). Continuing to assess the effects of changing pCO_2 on phytoplankton and the potential compensatory responses will further aid with the understanding of the impacts of changing pCO_2 in freshwater ecosystems.

In addition to phytoplankton and zooplankton, the responses to changes in pCO₂ of freshwater macrophytes have been examined and studies suggest that macrophytes may be less at risk compared to plankton. Macrophytes require CO₂ for photosynthesis and can either obtain it directly from the surrounding environment in the form of free CO₂, or by taking up HCO3⁻. Although some species preferentially utilise free CO₂ because of the increased metabolic cost associated with utilising HCO₃⁻ (Jones 2005), in aquatic environments with low pCO₂, species that can use HCO₃⁻ outcompete species that cannot (Vadstrup & Madsen 1995). Freshwater pCO₂ may also be a controlling environmental factor for some macrophyte species, but responses to changes in pCO₂ may vary based on alkalinity (Titus 1992). Elevated pCO₂ has been found to increase the rate of photosynthesis (Madsen et al. 1996), influence species distributions within streams (Demars & Tremolieres 2009; Maberly et al. 2015), increase growth (Yan et al. 2006; Cao & Ruan 2015), and alter allocation of biomass (Cao & Ruan 2015). Of note, however, macrophytes have been found to self-limit based on daily fluctuations in pH (i.e. changes in pCO₂) once biomass increases beyond specific thresholds (Maberly & Spence 1983; Sand-Jensen 1989). Some macrophytes, such as Myriophyllum aquaticum (Verdcourt), have shown phenotypic responses to changing pCO₂ by increasing leaf, stem and root biomass (Malheiro et al. 2013), suggesting that M. aquaticum maintain normal function in variable CO2 environments. Because most macrophytes are adapted to use either free CO_2 or HCO_3^{-} , they may respond conservatively to changing pCO₂ so long as one of the two forms of DIC are available (note exception being Vallisneria spp. (Table 1)), and thus be less at risk to climate-induced changes in pCO₂ levels compared to other more sensitive taxonomic groups.

Few studies have focused on the impacts of changing pCO₂ on freshwater macroinvertebrates (Table 1), however, work on marine species is increasing and may provide at least some insight. For example, it has been shown that elevated pCO₂ levels can result in a range of negative consequences for molluses, including reduced growth, survival and recruitment (reviewed by Parker et al. 2013). In addition, there is evidence to suggest that several subcellular processes in molluscs will be negatively affected by elevated pCO₂ levels, including the cellular stress response, energy production and protein synthesis (Thompson et al. 2015). Of the few studies carried out on freshwater macroinvertebrates, high pCO₂ from a natural spring dictated the distribution of endemic snails (O'Brien & Blinn 1999), the presence of aquatic insects (Blinn & Sanderson 1989), and resulted in leeches being the top predator in the food web (Cole & Watkins 1977) because of the lack of fish in this system (Cole & Barry 1973). It should be noted that the high amount of pCO₂ observed in these studies is likely beyond the upper limit (100 000+µatm) one could reasonably expect for freshwater systems in the future, but these studies do offer insight into potential outcomes for biota; further research addressing the impacts of more ecologically relevant levels of pCO_2 on freshwater macroinvertebrates is warranted.

Freshwater fish have been relatively understudied with respect to responses to climate-induced changes in pCO₂. To the best of our knowledge, Ou et al. (2015) have carried out the only study that explicitly links potential climate change levels of freshwater pCO₂ to biological responses in a freshwater fish, pink salmon (Oncorhynchus gobuscha, Walbaum). In this study, Ou et al. (2015) characterised the effect of rising pCO₂ at multiple stages of development in pink salmon, and found that growth rate and aerobic scope were reduced in fish exposed to elevated pCO₂ (1000 and 2000 µatm). However, recently collected (August 2014) longitudinal survey data from the Sol Duc river on the Olympic Peninsula, WA, suggest that ambient pCO₂ concentrations range from 383 to 3400 µatm (D. Butman, unpublished data), with some of the highest concentrations in regions identified to contain salmonids (McMillan et al. 2007), suggesting that salmonids may currently be exposed to levels beyond those studied by Ou et al. (2015). Substantial work has also been carried out on the physiological effects of elevated pCO_2 in the blood of fish (hypercapnia), and the mechanisms underlying these effects (reviewed by Heuer & Grosell 2014). Hypercapnia elicits a range of physiological responses in fish, including changes in acid-base balance, mitochondrial function, osmoregulation, reproduction, metabolism and cardiorespiratory function, but these responses have rarely been examined at environmentally relevant levels of pCO₂ (1200-1900 µatm, Heuer & Grosell 2014). To supplement the lack of understanding of how environmentally relevant pCO₂ levels will affect freshwater fish, comparisons to the effects of acid rain (which also results in a decrease in pH) have been made (e.g. Heino et al. 2009), since this has been extensively studied (e.g. Schindler 1988). However, the applicability of comparisons between the effect of acid rain and elevated pCO₂ are limited because acid rain results in the addition of strong acids (e.g. sulphuric acid [H₂SO₄]) and reduces pH by a much greater extent than H₂CO₃, a weak acid. In general, studies on marine species, as well as work carried out on hypercapnia and acid rain in freshwater fishes, provide the bulk of the information available to biologists making predictions about the consequences of changes in pCO_2 levels on freshwater fishes, presenting a clear knowledge gap that needs to be addressed.

KNOWLEDGE GAPS

The lack of knowledge related to how freshwater pCO_2 levels may change in the future and the potential impacts to freshwater biota are concerning, and thus a path forward for researchers is necessary. Below, a list of knowledge gaps that should be addressed have been compiled and commentary has been provided to suggest potential paths forward:

(1) Gaining a detailed understanding of the abiotic and biotic factors that affect pCO_2 levels in freshwater is vital for understanding how pCO_2 levels will change as a result of rising atmospheric CO_2 (e.g. magnitude of change, rate of change, variation, etc.), and how ecosystems may potentially respond. This may be addressed using controlled laboratory experiments and microcosms, but long-term monitoring coupled with

mechanistic modelling of carbon sources into freshwater systems is also likely the key. Studies to understand freshwater pCO_2 levels should not be completed in isolation of the terrestrial ecosystem and more research is needed to evaluate the magnitude of terrestrial ecosystems as a source of pCO_2 .

(2) Given that C cycling in freshwater systems is in part driven by freshwater biota, understanding photosynthesis and respiration rates of phytoplankton and zooplankton under altered pCO₂ conditions will be necessary to assess C flux. Low-Décarie *et al.* (2014) have aptly detailed changes in aquatic primary productivity should pCO₂ levels rise, but understanding how a range of pCO₂ level outcomes may influence aquatic primary productivity is needed.

(3) There is a lack of empirical data associated with the tolerance of taxa and species to deviations in environmental pCO₂ levels. It is unclear whether biota have the potential to acclimatise and/or adapt to changing pCO₂ levels, and this topic requires attention from animal and plant physiologists. Better understanding the range of pCO₂ levels that freshwater biota may currently be exposed to and the levels that they may experience in the future will inform how species distributions may change in the future and identify at-risk populations. To ensure ecosystem functions remain stable, our priority should be to understand how keystone species and sensitive species (e.g. calcifying organisms) respond to changes in pCO_2 levels. Laboratory controlled experiments offer a useful way to determine species tolerances, however, landscape-scale presence/absence studies may help to identify which species are more/less tolerant to high/low pCO₂.

(4) Weak acidification as a co-factor to changing pCO_2 levels should be explored further, as well as understanding the independent effects of changes in pCO2 and pH. Gaining a better understanding of the contribution of each of these individual factors will help to build a mechanistic understanding of the responses of biota to elevated pCO₂ levels and decreases in pH. (5) Freshwater systems are complex and changes in pCO_2 levels will likely be coupled with other stressors. Thus, it becomes necessary to understand the impact of altered pCO_2 levels on biota in the context of a multiple stressor environment. For example, stressors such as limited nutrients, weak acidification, thermal changes, reduced water connectivity, desiccation, etc., are products of climate change and the additional role of pCO_2 as a co-stressor should be considered. Microcosm studies where different stressors can be paired and manipulated are likely the most suitable path forward to understand the role of pCO₂ in a multiple stressor environment. Landscape-scale studies may also help to identify the stressors that are present when pCO₂ levels change in particular environments.

(6) Previous studies have focused largely on the effects of an increase in pCO_2 levels, however, future pCO_2 levels may vary widely (as pCO_2 currently does) and as such study designs should consider assessing risk to biota across a range of pCO_2 levels.

CONCLUSIONS

Overall, empirical research into changing freshwater pCO_2 levels has focused on the assumption that it will rise, and to

date, the validity of this is unknown and should be addressed by both biogeochemists and biologists. With respect to biota, with the exception of phytoplankton and macrophytes, little is known about the ecological and physiological consequences of changing freshwater pCO₂. Perhaps the most detrimental effects found to date are the stark changes in growth and community in phytoplankton. These changes to phytoplankton growth and community structure will likely have cascading effects on the freshwater food web and water quality of inland systems. Furthermore, the few studies completed to date on freshwater fishes also suggest that significant negative consequences to behaviour and physiology can be expected should pCO₂ levels rise. Given the limited empirical data detailed in this review, whether or not freshwater biota are at risk to changing pCO₂ is difficult to assess. Certainly, changes in pCO₂ levels have been shown to alter key biological processes (e.g. rate photosynthesis, species distributions, community compositions, nutrient quality, etc.), but whether these changes leave freshwater ecosystems 'at risk' is still unclear. We propose that researchers use the knowledge gaps outlined in this review to grow our collective understanding of how freshwater biota are influenced by changes in pCO₂ levels so that predictions of how future levels of pCO₂ may impact species responses and overall ecosystems can be made and potentially mitigated.

ACKNOWLEDGEMENTS

The authors thank three anonymous reviewers and the handling editor for their comments and informative suggestions. This work was supported by the Illinois Department of Natural Resources, through funds provided by the USEPA's Great Lakes Restoration Initiative (GLRI).

REFERENCES

- Abril, G., Martinez, J.-M., Artigas, L.F., Moreira-Turcq, P., Benedetti, M.F., Vidal, L. *et al.* (2014). Amazon River carbon dioxide outgassing fuelled by wetlands. *Nature*, 505, 395–398.
- Arneth, A., Harrison, S.P., Zaehle, S., Tsigaridis, K., Menon, S., Bartlein, P.J. *et al.* (2010). Terrestrial biogeochemical feedbacks in the climate system. *Nat. Geosci.*, 3, 525–532.
- Atilla, N., McKinley, G.A., Bennington, V., Baehr, M., Urban, N., DeGrandpre, M. *et al.* (2011). Observed variability of Lake Superior pCO₂. *Limnol. Oceanogr.*, 56, 775–786.
- Atwood, T.B., Hammill, E., Greig, H.S., Kratina, P., Shurin, J.B., Srivastava, D.S., *et al.* (2013). Predator-induced reduction of freshwater carbon dioxide emissions. *Nature Geosci.*, 6, 191–194.
- Atwood, T.B., Hammill, E., Srivastava, D.S. & Richardson, J.S. (2014). Competitive displacement alters top-down effects on carbon dioxide concentrations in a freshwater ecosystem. *Oecologia*, 175, 353–361.
- Beyer, L., Fründ, R., Schleuß, U. & Wachendorf, C. (1993). Colluvisols under cultivation in Schleswig-Holstein. 2. Carbon distribution and soil organic matter composition. Z. Pflanzenernaehr. Bodenkd., 156, 213–217.
- Blinn, D.W. & Sanderson, M.W. (1989). Aquatic insects in Montezuma Well, Arizona, USA: a travertine spring mound with high alkalinity and dissolved carbon dioxide. *Great Basin Nat.*, 49, 85–89.
- Butman, D. & Raymond, P.A. (2011). Significant efflux of carbon dioxide from streams and rivers in the United States. *Nat. Geosci.*, 4, 839–842.
- Cai, W.J., Wang, Z.H.A. & Wang, Y.C. (2003). The role of marshdominated heterotrophic continental margins in transport of CO₂

between the atmosphere, the land-sea interface and the ocean. *Geophys. Res. Lett.*, 30, 1849.

- Cao, J. & Ruan, H. (2015). Responses of the submerged macrophyte *Vallisneria natans* to elevated CO₂ and temperature. *Aquat. Biol.*, 23, 119–127.
- Catalan, J., Pla, S., Garcia, J. & Camarero, L. (2009). Climate and CO₂ saturation in an alpine lake throughout the Holocene. *Limnol. Oceanogr.*, 54, 2542–2552.
- Ciais, P., Tans, P.P., White, J.W.C., Trolier, M., Francey, R.J., Berry, J.A. *et al.* (1995). Partitioning of ocean and land uptake of CO₂ as inferred by δC^{13} measurements from the NOAA climate monitoring and diagnostics laboratory global air sampling network. *J. Geophys. Res.*, 100, 5051–5070.
- Ciais, P., Sabine, C.L., Bala, G., Bopp, L., Brovkin, V., Canadell, J. et al. (2013). Carbon and other biogeochemical cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M.). Cambridge University Press, Cambridge, UK and New York, NY, pp. 465–570.
- Clair, T.A. & Ehrman, J.M. (1996). Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: a neural network approach. *Limnol. Oceanogr.*, 41, 921–927.
- Cole, G.A. & Barry, W.T. (1973). Montezuma Well, Arizona, as a habitat. *Ariz.-Nev. Acad. Sci.*, 8, 7–13.
- Cole, G.A. & Watkins, R.L. (1977). Hyalella montezuma, a new species (Crustacea: Amphipoda) from Montezuma Well, Arizona. Hydrobiologia, 52, 175–184.
- Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G. *et al.* (2007). Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. *Ecosystems*, 10, 171–184.
- Collins, S. & Bell, G. (2004). Phenotypic consequences of 1,000 generations of selection at elevated CO₂ in a green alga. *Nature*, 431, 566–569.
- Cory, R.M., Ward, C.P., Crump, B.C. & Kling, G.W. (2014). Sunlight controls water column processing of carbon in arctic fresh waters. *Science*, 345, 925–928.
- Dai, A., Qian, T.T., Trenberth, K.E. & Milliman, J.D. (2009). Changes in continental freshwater discharge from 1948 to 2004. J. Clim., 22, 2773– 2792.
- Davidson, E.A. & Janssens, I.A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. *Nature*, 440, 165–173.
- Demars, B.O. & Tremolieres, M. (2009). Aquatic macrophytes as bioindicators of carbon dioxide in groundwater fed rivers. *Sci. Total Environ.*, 407, 4752–4763.
- Doney, S.C., Fabry, V.J., Feely, R.A. & Kleypas, J.A. (2009). Ocean acidification: the other CO₂ problem. Ann. Rev. Mar. Sci., 1, 169–192.
- Donohue, R.J., Roderick, M.L., McVicar, T.R. & Farquhar, G.D. (2013). Impact of CO₂ fertilization on maximum foliage cover across the globe's warm, arid environments. *Geophys. Res. Lett.*, 40, 3031–3035.
- Fabry, V.J., Seibel, B.A., Feely, R.A. & Orr, J.C. (2008). Impacts of ocean acidification on marine fauna and ecosystem processes. *ICES J. Mar. Sci.*, 65, 414–432.
- Feely, R.A., Doney, S.C. & Cooley, S.R. (2009). Ocean acidification: present conditions and future changes in a high-CO₂ world. *Oceanography*, 22, 36–47.
- Flynn, K.J., Blackford, J.C., Baird, M.E., Raven, J.A., Clark, D.R., Beardall, J. *et al.* (2012). Changes in pH at the exterior surface of plankton with ocean acidification. *Nat. Clim. Change*, 2, 510–514.
- Gupta, G.V.M., Sarma, V.V.S.S., Robin, R.S., Raman, A.V., Jai Kumar, M. & Rakesh, M. (2008). Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO₂ in a tropical coastal lagoon (Chilka Lake, India). *Biogeochemistry*, 87, 265–285.
- Hartman, D.L., Klein Tank, A.M.G., Rusticucci, M., Alexander, L.V., Brönnimann, S., Charabi, Y. et al. (2013). Observations: atmosphere and surface. In: Climate Change 2013: The Physical Science Basis.

Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M.). Cambridge University Press, Cambridge, UK and New York, NY, pp. 159–254.

- Hein, M. (1997). Inorganic carbon limitation of photosynthesis in lake phytoplankton. *Freshwat. Biol.*, 37, 545–552.
- Heino, J., Virkkala, R. & Toivonen, H. (2009). Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. *Biol. Rev.*, 84, 39–54.
- Hessen, D.O., Ågren, G.I., Anderson, T.R., Elser, J.J. & de Ruiter, P.C. (2004). Carbon sequestration in ecosystems: the role of stoichiometry. *Ecology*, 85, 1179–1192.
- Heuer, R.M. & Grosell, M. (2014). Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am. J. Physiol. Regul. Integr. Comp. Physiol., 307, R1061–R1084.
- Hotchkiss, E.R., Hall, R.O. Jr, Sponseller, R.A., Butman, D., Klaminder, J., Laudon, H. *et al.* (2015). Sources of and processes controlling CO₂ emissions change with the size of streams and rivers. *Nat. Geosci.*, 8, 696–699.
- Howarth, R.W., Fruci, J.R. & Sherman, D. (1991). Inputs of sediment and carbon to an estuarine ecosystem - influence of land-use. *Ecol. Appl.*, 1, 27–39.
- Humborg, C., Smedberg, E., Blomqvist, S., Morth, C.M., Brink, J., Rahm, L. *et al.* (2004). Nutrient variations in boreal and subarctic Swedish rivers: landscape control of land-sea fluxes. *Limnol. Oceanogr.*, 49, 1871–1883.
- Jacinthe, P.A., Lal, R., Owens, L.B. & Hothem, D.L. (2004). Transport of labile carbon in runoff as affected by land use and rainfall characteristics. *Soil Till. Res.*, 77, 111–123.
- Jansson, M., Karlsson, J. & Jonsson, A. (2012). Carbon dioxide supersaturation promotes primary production in lakes. *Ecol. Lett.*, 15, 527–532.
- Jones, J.I. (2005). The metabolic cost of bicarbonate use in the submerged plant *Elodea nuttallii*. Aquat. Bot., 83, 71–81.
- Jutfelt, F., Bresolin de Souza, K., Vuylsteke, A. & Sturve, J. (2013). Behavioural disturbances in a temperate fish exposed to sustained high-CO₂ levels. *PLoS ONE*, 8, e65825.
- Kling, G.W., Kipphut, G.W. & Miller, M.C. (1992). The flux of CO₂ and CH₄ from lakes and rivers in Arctic Alaska. *Hydrobiologia*, 240, 23–36.
- Kokic, J., Wallin, M.B., Chmiel, H.E., Denfeld, B.A. & Sobek, S. (2015). Carbon dioxide evasion from headwater systems strongly contributes to the total export of carbon from a small boreal lake catchment. J. Geophys. Res.-Biogeo., 120, 13–28.
- Long, S.P., Ainsworth, E.A., Leakey, A.D.B., Nosberger, J. & Ort, D.R. (2006). Food for thought: lower-than-expected crop yield stimulation with rising CO₂ concentrations. *Science*, 312, 1918–1921.
- Low-Décarie, E., Jewell, M.D., Fussmann, G.F. & Bell, G. (2013). Longterm culture at elevated atmospheric CO₂ fails to evoke specific adaptation in seven freshwater phytoplankton species. *Proc. R. Soc. B*, 280, 20122598.
- Low-Décarie, E., Fussmann, G.F. & Bell, G. (2014). Aquatic primary production in a high-CO₂ world. *Trends Ecol. Evol.*, 29, 223–232.
- Low-Décarie, E., Bell, G. & Fussmann, G.F. (2015). CO₂ alters community composition and response to nutrient enrichment of freshwater phytoplankton. *Oecologia*, 177, 875–883.
- Maberly, S.C. (1996). Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. *Freshwat. Biol.*, 35, 579–598.
- Maberly, S.C. & Spence, D.H.N. (1983). Photosynthetic inorganic carbon use by freshwater plants. J. Ecol., 71, 705–724.
- Maberly, S.C., Barker, P.A., Stott, A.W. & De Ville, M.M. (2013). Catchment productivity controls CO₂ emissions from lakes. *Nat. Clim. Change*, 3, 391–394.
- Maberly, S.C., Berthelot, S.A., Stott, A.W. & Gontero, B. (2015). Adaptation by macrophytes to inorganic carbon down a river with naturally variable concentrations of CO₂. J. Plant Physiol., 172, 120–127.

- Madsen, T.V., Maberly, S.C. & Bowes, G. (1996). Photosynthetic acclimation of submersed angiosperms to CO_2 and HCO_3^- . Aquat. Biol., 53, 15–30.
- Malheiro, A.C.E., Jahns, P. & Hussner, A. (2013). CO₂ availability rather than light and temperature determines growth and phenotypical responses in submerged *Myriophyllum aquaticum. Aquat. Bot.*, 110, 31–37.
- McCormick, P.V. & Cairns, J.J. (1994). Algae as indicators of environmental change. J. Appl. Phycol., 6, 509–526.
- McDonald, C.P., Stets, E.G., Striegl, R.G. & Butman, D. (2013). Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States. *Global Biogeochem. Cy.*, 27, 285–295.
- McMillan, J.R., Katz, S.L. & Pess, G.R. (2007). Observational evidence of spatial and temporal structure in a sympatric anadromous (winter steelhead) and resident rainbow trout mating system on the Olympic Peninsula, Washington. *Trans. Am. Fish. Soc.*, 136, 736–748.
- Munday, P.L., Dixson, D.L., McCormick, M.I., Meekan, M., Ferrari, M.C.O. & Chivers, D.P. (2010). Replenishment of fish populations is threatened by ocean acidifcation. *Proc. Natl Acad. Sci. USA*, 107, 12930–12934.
- Munday, P.L., Cheal, A.J., Dixson, D.L., Rummer, J.L. & Fabricius, K.E. (2014). Behavioural impairment in reef fishes caused by ocean acidification at CO₂ seeps. *Nat. Clim. Change*, 4, 487–492.
- Norby, R.J., DeLucia, E.H., Gielen, B., Calfapietra, C., Giardina, C.P., King, J.S. *et al.* (2005). Forest response to elevated CO₂ is conserved across a broad range of productivity. *Proc. Natl Acad. Sci. USA*, 102, 18052–18056.
- O'Brien, C. & Blinn, D.W. (1999). The endemic spring snail *Pyrgulopsis* montezumensis in a high CO₂ environment: importance of extreme chemical habitats as refugia. *Freshwat. Biol.*, 42, 225–234.
- Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A. *et al.* (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. *Nature*, 437, 681–686.
- Ou, M., Hamilton, T.J., Eom, J., Lyall, E.M., Gallup, J., Jiang, A. *et al.* (2015). Responses of pink salmon to CO₂-induced aquatic acidification. *Nat. Clim. Change*, 5, 950–955.
- Parker, L.M., Ross, P.M., O'Connor, W.A., Pörtner, H.O., Scanes, E. & Wright, J.M. (2013). Predicting the response of molluscs to the impact of ocean acidification. *Biology*, 2, 651–692.
- Parmesan, C. & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. *Nature*, 42, 37–42.
- Philibert, A. & Prairie, Y.T. (2002). Diatom-based transfer functions for western Quebec lakes (Abitibi and Haute Mauricie): the possible role of epilimnetic CO₂ concentration in influencing diatom assemblages. J. Paleolimnol., 27, 465–480.
- Phillips, J., McKinley, G., Bennington, V., Bootsma, H., Pilcher, D., Sterner, R. *et al.* (2015). The potential for CO₂-induced acidification in freshwater: a Great Lakes case study. *Oceanography*, 25, 136–145.
- Pilcher, D.J., McKinley, G.A., Boostma, H.A. & Bennington, V. (2015). Physical and biogeochemical mechanisms of internal carbon cycling in Lake Michigan. J. Geophys. Res.-Oceans, 120, 2112–2128.
- Qiu, B. & Gao, K. (2002). Effects of CO₂ enrichment on the bloomforming cyanobacterium *Microcystis aeruginosa* (Cyanophyceae): physiological responses and relationships with the availability of dissolved inorganic carbon. *J. Phycol.*, 38, 721–729.
- Raymond, P.A. & Saiers, J.E. (2010). Event controlled DOC export from forested watersheds. *Biogeochemistry*, 100, 197–209.
- Raymond, P.A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M. *et al.* (2013). Global carbon dioxide emissions from inland waters. *Nature*, 503, 355–359.
- Reich, P.B., Hobbie, S.E. & Lee, T.D. (2014). Plant growth enhancement by elevated CO₂ eliminated by joint water and nitrogen limitation. *Nat. Geosci.*, 7, 920–924.
- Rhein, M., Rintoul, S.R., Aoki, S., Campos, E., Chambers, D., Feely, R.A. et al. (2013). Observations: ocean. In: Climate Change 2013: The

Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M.). Cambridge University Press, Cambridge, UK and New York, NY, pp. 255–316.

- Richey, J.E., Brock, J.T., Naiman, R.J., Wissmar, R.C. & Stallard, R.F. (1980). Organic carbon: oxidation and transport in the Amazon River. *Science*, 207, 1348–1351.
- Roberts, A.D. & Barnhart, M.C. (1999). Effects of temperature, pH, and CO₂ on transformation of the glochidia of *Anodonta suborbiculata* on fish hosts and *in vitro. J. N. Am. Benthol. Soc.*, 18, 477–487.
- Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzwelg, C. & Pounds, J.A. (2003). Fingerprints of global warming on wild animals and plants. *Nature*, 421, 57–60.
- Ross, P.M., Parker, L., O'Connor, W.A. & Bailey, E.A. (2011). The impact of ocean acidification on reproduction, early development and settlement of marine organisms. *Water*, 3, 1005–1030.
- Sabine, C.L., Feely, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L. *et al.* (2004). The oceanic sink for anthropogenic CO₂. *Science*, 305, 367–371.
- Sala, O.E., Chapin, F.S. III, Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R. *et al.* (2000). Global biodiversity scenarios for the year 2100. *Science*, 287, 1770–1775.
- Sand-Jensen, K. (1989). Environmental variables and their effect on photosythnesis of aquatic plant communities. *Aquat. Bot.*, 34, 5–25.
- Schindler, D.W. (1988). Effects of acid rain on freshwater ecosystems. *Science*, 239, 149–157.
- Schippers, P., Lurling, M. & Scheffer, M. (2004). Increase of atmospheric CO₂ promotes phytoplankton productivity. *Ecol. Lett.*, 7, 446–451.
- Shapiro, J. (1997). The role of carbon dioxide in the initiation and maintenance of blue-green dominance in lakes. *Freshwat. Biol.*, 37, 307– 323.
- Sobek, S., Algesten, G., Bergstrom, A.-K., Jansson, M. & Tranvik, L.J. (2003). The catchment and climate regulation of pCO₂ in boreal lakes. *Global Change Biol.*, 9, 630–641.
- Sobek, S., Tranvik, L.J. & Cole, J.J. (2005). Temperature independence of carbon dioxide supersaturation in global lakes. *Global Biogeochem. Cy.*, 19, GB2003.
- Sterner, R.W. & Elser, J.J. (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ.
- Telmer, K. & Veizer, J. (1999). Carbon fluxes, pCO₂ and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives. *Chem. Geol.*, 159, 61–86.
- Thompson, E.L., O'Connor, W., Parker, L., Ross, P. & Raftos, D.A. (2015). Differential proteomic responses of selectively bred and wild Sydney rock oyster populations exposed to elevated CO₂. *Mol. Ecol.*, 24, 1248–1262.
- Titus, J.E. (1992). Submersed macrophyte growth at low pH. II. CO₂ x sediment interactions. *Oecologia*, 92, 391–398.
- Titus, J.E. & Andorfer, J.H. (1996). Effects of CO₂ enrichment on mineral accumulation and nitrogen relations in a submersed macrophyte. *Freshwat. Biol.*, 36, 661–671.
- Trobajo, R., Ibañez, C., Clavero, E., Salvadó, J. & Jørgensen, S.E. (2014). Modelling the response of microalgae to CO₂ addition. *Ecol. Model.*, 294, 42–50.
- Urabe, J. & Waki, N. (2009). Mitigation of adverse effects of rising CO₂ on a planktonic herbivore by mixed algal diets. *Global Change Biol.*, 15, 523–531.
- Urabe, J., Togari, J. & Elser, J.J. (2003). Stoichiometric impacts of increased carbon dioxide on a planktonic herbivore. *Global Change Biol.*, 9, 818–825.
- Vadstrup, M. & Madsen, T. (1995). Growth limitation of submerged aquatic macrophytes by inorganic carbon. *Freshwat. Biol.*, 34, 411–419.
- Verschoor, A.M., Van Dijk, M.A., Huisman, J.E.F. & Van Donk, E. (2013). Elevated CO₂ concentrations affect the elemental stoichiometry

and species composition of an experimental phytoplankton community. *Freshwat. Biol.*, 58, 597-611.

- Verspagen, J.M., Van de Waal, D.B., Finke, J.F., Visser, P.M. & Huisman, J. (2014a). Contrasting effects of rising CO₂ on primary production and ecological stoichiometry at different nutrient levels. *Ecol. Lett.*, 17, 951–960.
- Verspagen, J.M., Van de Waal, D.B., Finke, J.F., Visser, P.M., Van Donk, E. & Huisman, J. (2014b). Rising CO₂ levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes. *PLoS ONE*, 9, e104325.
- van de Waal, D.B., Verschoor, A.M., Verspagen, J.M.H., van Donk, E. & Huisman, J. (2010). Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. *Front. Ecol. Environ.*, 8, 145–152.
- van de Waal, D.B., Verspagen, J.M., Finke, J.F., Vournazou, V., Immers, A.K., Kardinaal, W.E. *et al.* (2011). Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO₂. *ISEM J.*, 5, 1438–1450.
- Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C. *et al.* (2002). Ecological responses to recent climate change. *Nature*, 416, 389–396.

- Wetzel, R.G. (2001). *Limnology: Lake and River Ecosystems*, 3rd edn. Academic Press, San Diego.
- Wilson, H.F. & Xenopoulos, M.A. (2009). Effects of agricultural land use on the composition of fluvial dissolved organic matter. *Nat. Geosci.*, 2, 37–41.
- Yan, X., Yu, D. & Li, Y.K. (2006). The effects of elevated CO₂ on clonal growth and nutrient content of submerge plant *Vallisneria spinulosa*. *Chemosphere*, 62, 595–601.
- Ying, K., Zimmerman, W.B. & Gilmour, D.J. (2014). Effects of CO₂ and pH on growth of the microalga *Dunaliella salina*. J. Microb. Biochem. Tech., 6, 167–173.

Editor, Robert Sterner

Manuscript received 28 August 2015

First decision made 6 October 2015

Manuscript accepted 22 October 2015